<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 14 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Georgia;
        panose-1:2 4 5 2 5 4 5 2 3 3;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:11.0pt;
        font-family:"Calibri","sans-serif";}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
pre
        {mso-style-priority:99;
        mso-style-link:"HTML Preformatted Char";
        margin:0in;
        margin-bottom:.0001pt;
        font-size:10.0pt;
        font-family:"Courier New";}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri","sans-serif";
        color:windowtext;}
span.HTMLPreformattedChar
        {mso-style-name:"HTML Preformatted Char";
        mso-style-priority:99;
        mso-style-link:"HTML Preformatted";
        font-family:"Courier New";}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri","sans-serif";}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Georgia","serif"">Please join us TODAY, Monday, March 30th for the Condensed Matter Theory Seminar presented by Jason Alicea, CalTech on at 11:30 am in the Smith Seminar Room (1080 PRB).<o:p></o:p></span></p>
<pre style="mso-margin-top-alt:0in;margin-right:.25in;margin-bottom:0in;margin-left:.5in;margin-bottom:.0001pt"><b><i><span style="font-size:12.0pt;font-family:"Georgia","serif""><o:p> </o:p></span></i></b></pre>
<pre style="margin-right:.25in"><b><i><span style="font-size:12.0pt;font-family:"Georgia","serif"">"A new path towards universal decoherence-free quantum computation"<o:p></o:p></span></i></b></pre>
<pre style="text-align:justify"><b><span style="font-size:12.0pt;font-family:"Georgia","serif""><o:p> </o:p></span></b></pre>
<p class="MsoNormal" style="margin-right:27.0pt;text-align:justify"><b><span style="font-size:12.0pt;font-family:"Georgia","serif"">Abstract:</span></b><span style="font-size:12.0pt;font-family:"Georgia","serif"">  The realization of a quantum computer poses
 a grand outstanding challenge that promises technological advances in areas ranging from cryptography to quantum simulation and beyond.  Typically decoherence--whereby environmental perturbations corrupt quantum information--presents the chief obstacle.  Topological
 quantum computation, however, cleverly sidesteps decoherence at the hardware level by non-locally manipulating quantum information using emergent particles known as non-Abelian anyons.  Considerable progress has recently been made towards stabilizing the simplest
 non-Abelian anyons (particles binding Majorana zero-modes) by judiciously combining well-understood materials.  This ‘engineering’ approach has inspired a wave of experiments, though such Majorana-based platforms require unprotected gates to run general quantum
 computing algorithms, thus entailing significant overhead.  A natural question therefore arises: can one combine ordinary ingredients to synthesize a fully fault-tolerant, universal quantum computer?  I will answer this question in the affirmative.  More precisely,
 I will describe how one can combine simple fractional quantum Hall states and conventional superconductors to realize a novel superconducting phase that harbors so-called Fibonacci anyons.  These particles constitute the ‘holy grail’ for topological quantum
 computing in that they allow for computational universality via a single elementary gate generated by braiding the anyons around each other.<o:p></o:p></span></p>
<pre style="margin-right:.25in;text-align:justify"><span style="font-size:12.0pt;font-family:"Georgia","serif""><o:p> </o:p></span></pre>
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt;font-family:"Georgia","serif"">Thank you,<br>
Trisch<o:p></o:p></span></p>
<p class="MsoNormal" style="text-align:justify"><span style="font-size:12.0pt;font-family:"Georgia","serif"">2-2778<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>