

#### WNS Research by the National Wildlife Health Center

Anne Ballmann, DVM, PhD

**OBWG - Columbus** 

Dec 2013





# National Wildlife Health Center Madison, Wisconsin



**Our Mission-**

National leadership to safeguard wildlife & ecosystem health through dynamic partnerships and exceptional science

U.S. Department of the Interior U.S. Geological Survey

#### www.nwhc.usgs.gov







Partners











MISSOURI

BAT CONSERVATION

O N A

NTERNAT



BOSTON

UNIVERSITY



-F

WILDLIFE DISEASE STUDY

INDIANA DIVISION OF

RE

DIV





New York State

ILDLIFE RESOURCES

DEPARTMENT OF

CONSERVATION



Canadian Cooperative Wildlife Health Centre DNRE Centre Canadien Coopératif de la Santé de la Faune

TheNature

Conservancy

DEPT, OF NATURAL RESOURCES



## History of NWHC Involvement

- 2007- contacted by NYDEC to assist with unusual winter mortality of cave bats
- 2008- field investigations; 5 states affected
- 2009- novel fungus associated with diseased bats; histopathological criteria; PCR development



## WNS Pathology – Wing Damage



**Bat Wings** – In addition to flight, they are critical for:

- Heat Dissipation
- Water Control
- Gas Exchange
- Blood Pressure Regulation

#### **Citations:**

Meteyer, et al. 2009. *JVDI* 21:411-414. Cryan, et al. 2010. *BMC Biology* 8. Cryan, et al. 2013. *JWD* 49:398-402. Warnecke, et al. 2013. *Biol Letters* 9.





## History of NWHC Involvement

- 2010- environmental transmission study
- 2011- infection trials; recovery with supportive care demonstrated; UVA screening
- 2012- improved PCR assay; environmental distribution & persistence; fungal genomics; temperature dependent growth of Pd



Environmental Distribution of *P. destructans* 

- Soil samples from caves and mines collected in states bordering and east of Mississippi River (2009-2012)
- Identified P. destructans DNA and viable fungus.





**Citations:** Lorch, et al. 2013. *Appl and Environ Micro* 79:1293-1301. Lindner, et al. 2010. *Mycologia* 103:241-246.

#### **Current Management-based Research**

- Evaluating critical periods of Pd movement by bats
- Investigating Pd distribution within cave microclimates
- Understanding the pathophysiology of WNS mortality
- Preliminary work to develop viral vectors for orally ingestible vaccines for bats







#### Notice / Alert Help Stop the Spread of White-Nose Syndrome

White-nose syndrome is a fatal disease among bats. A cave closure advisory has been issued by the U.S. Fish and Wildlife Service for the eastern U.S. to prevent the spread of this disease. The caves on this State Forest, State Park, State Natural Area, or Wildlife Management Area are closed to the public

For more information on white-nose syndrome visit: www.fws.gov/northeast/white\_nose.html





Help stop the spread of white-nose syndrome, a condition that is fatal to bats. A cave closure the U.S. Fish and Wildlife Service for the eastern U.S. in an effort to minimize the spread of white-nose syndrome.

The caves on this property are closed to public access until further notice. Please contact the property owner if you must enter. Violators may be prosecuted under penalty of the law.

or more information on white-nose

**Summer surveillance for P.** destructans on bats using contaminated hibernacula: **Implications for timing of** transmission

> A Ballmann<sup>1</sup>, M Torkelson<sup>2</sup>, D Blehert<sup>1</sup>, E Bohuski<sup>1</sup>, M Verant<sup>1</sup>, C Meteyer<sup>1</sup>, and R Russell<sup>1</sup>

<sup>1</sup>USGS-National Wildlife Health Center <sup>2</sup>UW-Madison

















## Background

- Continued spread of WNS
- Persistence of Pd in contaminated hibernacula
- Bat activity at hibernacula during summer
- Limited summer samples



# **Study Objectives**

- Do bats at contaminated sites in late summer harbor viable Pd thus posing a transmission risk during fall swarm?
  - Does the prevalence of Pd on bats differ between hibernacula with different degrees of mortality?
- Is Pd in different concentrations in hibernacula with different degrees of mortality?
- What is the risk of human-assisted movement of Pd associated with late summer trapping/ caving activity in the WNS-affected region?





#### Summer 2012 Study Sites (surveyed 7/18 – 8/22)





**National Wildlife Health Center** 

#### Site Comparison

| Site ID                  | Type/<br>Access | WNS Status<br>(Yr) | Winter<br>Popn | Winter Species                        |
|--------------------------|-----------------|--------------------|----------------|---------------------------------------|
| Edmonson Co. (KY)        | Cave - g        | - (Spr 2012)       | Stable         | MYLU, PESU, MYSO, EPFU, MYSE          |
| Carter Co. (KY)          | Cave - g        | - (Spr 2012)       | Stable         | MYSO, MYLU, MYSE, PESU, EPFU          |
| Breckinridge Co.<br>(KY) | Cave - p        | + (2011/2012)      | Stable         | MYLU, PESU, MYSE, MYSO,<br>MYGR, MYLE |
| Trigg Co. (KY)           | Cave - p        | +(2010/2011)       | Stable         | MYLU, PESU, MYSO, MYSE, EPFU          |
| Wise Co. (VA)            | Cave - g        | + (2011/2012)      | Stable         | MYLU, PESU, MYSO, MYLE, EPFU          |
| Montgomery Co.<br>(TN)   | Cave - o        | + (2010/2011)      | >25% loss      | MYLU, PESU, MYSE, EPFU                |
| Monroe Co. (IN)          | Cave - g        | + (2010/2011)      | >25% loss      | MYSO, MYLU, PESU, EPFU                |
| Lawrence Co. (OH)        | Mine - g        | + (2010/2011)      | >25% loss      | MYLU, MYSO, PESU, MYSE, EPFU          |

g-gated; o-open; p-private



# Methods

- Capture
- Demographic data

   Species, body wt., R forearm length, sex, repro status, age class
- WDI, UV
- Wing swab
- Feces
- Mark & release





National Wildlife Health Center



## **Environmental & Gear Sampling**

- Wall/ceiling swabs & sediment samples
   Assess levels of Pd contamination among sites
- Swabs of traps, clothing, & processing equipment
   Presence and viability of Pd



#### Summer Bat Abundance at Hibernacula

| Site                     | No. Trap<br>Events | Capture Effort<br>(bats/hr) | Capture<br>Method(s)    | No. of<br>In | Bats<br>Out |
|--------------------------|--------------------|-----------------------------|-------------------------|--------------|-------------|
| Edmonson Co. (KY)        | 2                  | 19.8                        | Harp trap,<br>Hand      | 98           | 2           |
| Carter Co. (KY)          | 2                  | 53.9                        | Hand                    | 89           | 0           |
| Breckinridge Co.<br>(KY) | 2                  | 21.6                        | Harp trap               | 101          | 62          |
| Trigg Co. (KY)           | 1                  | 86.3                        | Harp trap               | 115          | 10          |
| Wise Co. (VA)            | 2                  | 7.1                         | Mist net                | 49           | 44          |
| Montgomery Co.<br>(TN)   | 3                  | 3.0                         | Mist net                | 48           | 53          |
| Monroe Co. (IN)          | 2                  | 8.9                         | Harp trap<br>(modified) | 45           | 0           |
| Lawrence Co. (OH)        | 3                  | 4.8                         | Harp trap,<br>Mist net  | 72           | 63          |

#### Only 5 recaptures in all (0.5%)



#### Long Wave UV Fluorescence

- 3 bats (2 sites) with suspicious fluorescence
- Negative by PCR, histopathology, culture



N.Ramsay, USGS-NWHC



National Wildlife Health Center

# Summary of Pd Detection

| Site                  | Bats | Gear           |                                            |
|-----------------------|------|----------------|--------------------------------------------|
| Edmonson Co. (KY)     | +    | -              |                                            |
| Carter Co. (KY)       | -    | -              |                                            |
| Breckinridge Co. (KY) | +    | +<br>(2 equiv) | Harp trap strings<br>(Catch bag, backpack) |
| Trigg Co. (KY)        | +    | -              |                                            |
| Wise Co. (VA)         | -    | -              |                                            |
| Montgomery Co. (TN)   | -    | -              |                                            |
| Monroe Co. (IN)       | -    | +              | Backpack                                   |
| Lawrence Co. (OH)     | -    | +              | Harp trap catch bag                        |

Apparent summer prevalence on bats: 0.5%



## Conclusions

- Pd prevalence on bats is low (but not 0) during mid-late summer at contaminated hibernacula
   Viable Pd detected on bat trapped in August
- Summer bat movement likely does not contribute substantially to Pd dispersal on the landscape
   <u>– Edmonson Co. "clean" cave?</u>
- Human activities at hibernacula during the summer in the WNS endemic area do pose a risk





National Wildlife Health Center

#### Recommendations

- Surveillance for Pd on bats should occur winter through spring
- UV screening bats during the summer is not advised
- Nightly decontamination of mist nets or harp traps in leading edge & adjacent states during the summer is warranted





#### Thanks to our collaborators and volunteers!

