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However, experience indicates that even with the best wavefunctions available tod: v
the Hellmann- Feynman foree differs considerably {rom the energy-terivative force.
\s Salem and Wilson have shown [12], in the case of a der:_p.ij, the cnergy
dertvative is much more reliable, Tt s like the energy itself, stationary with respeect
to changes in the wavetunetion,  Uherefore, the error in the wavelunction enters
the energy derivative ondy ot second order, but it enters the Hellmann- Feyvnman foree
in hrst order,

Several nome r|-. al tests have been made [|_] 3—15], see also Part 11 of this SUT1ES)
which all show Iun.'. extraordinarily sensitive the Hellmann Feyvnman forces are,
kern and Karplus [14] caleulated the Hellmann Fevnman forees for hydrogen
Huoride with the quite good wavetunetion of Clementi (16 Slater-tvpe orbitals) and
obtained 1978 A, =642 mdyn for the rest force on fuorine at the experimental
L distance, This foree would shift the interatomic distance by about 11:7 A
Thus the Hellmann Feynman force is practically of no value in determining
cquilibrium configurations unless very good wavefunetions are used.  The better
the wavefunction is, however, the more accurate is the enersy derivative compared
with thL Hellmann—Fevnman foree, because of its second-order dependence on the
error the wavetunction.  Considering the quickly ine reasing  computational
ulmur as the wavefunction is made more and more accurate, it is much more
advantaceous to work with a medinm-pccuracy function and the ene rgy dermvative
than with a very aceuriate tunction and the Hellmann- T eynman foree.

If the Hellmann Feynman theorem does not hold, another difficulty arises if
one tries to caleulate foree constants from the Hellmanne Fevnman forees.  Because
the sum of the forees on the atoms does not necessarily vanish for the Hellmann—
F'eynman force as it does for the energy derivative force, the force constants will
depend on how the internal coordinates are defined with respect to the external ones
(translations and rotations of the molecule as a whole), v.z. foree constunts of 2
diutomic molecule will depend an whether the foree on atom A or B was used to
caleulate it

We conchude that quantities derived from the Hellmann Feynman force are
LTI r1li|‘- unrelianble and should not be used, unless 11 13 ageured that the Hellmann
Feynman theorem holds.  Examples show thar this is not true for present-day
wivefunetions.  An exception would be the use of Hoating hasis funcoons [10].

TRANSFORMATION FROM CARTESIAN TO INTERNAL FORCES

Let N be the number of atoms and # the number of internal conrdinates i a
SVInetry  species. X=(xp, 4w, ..o gy denotes  the  cartesian coordinates,
F=[—(FE/fx1)y .oy —(FEFvan)]t the corresponding forces q= (g1, y2. . . ., gy)
the internal coordinates and @ =[— (7 E/iqy), ..., —(¢8/iq,)] the internal forces,
The internul displacements dq are related to the cartesian nnes by the well-known B
watrrs of Wilson and Eliashevich [16]:

ig— B ox.
Thus for the forces:
f=B'g. (4)

From (8), e cannot he expressed directly, BT being a rectangular matrix and having

o inverse. We can, however, construct a set of matrices, all denoted symbolically
bv B! for which

B—IBt=1;
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where Lis the # by # unit matrix.  WMultiplying (8) by B! from the left, we obtain
the internal forces:
p=B"1f
The matrices B~ can be obtained by:
B 1—(BmB )"'Bm,

where m ig any 3N by 3N matrix which has the full symmetry of the molecule so
that (BmB*) is non-singularft. The fact that an infinite set of matrices B-—1 exists
is a consequence of the non-uniqueness of the transformation from internal
coordinates to cartesians.

5. DETERMINATION OF THE EQUILIBRIUM GEOMETRY

In determining the equilibrium nuclear configuration we can restrict ourselves
to the totally symmetric (4;) symmetry species if the symmetry of the equilibrium
configuration is known. Let qp be the starting vector of internal coordinates and
Fy a guess for the force constant matrix.  T'o obtain a better approximation qp we
calculate the forces ¢y and form:

q1=qu+ Aq=qu+ Fy 1y,

It is evident that if Fg were equal to the calculated force constant matrix and if the
forces ¢ depended linearly on the coordinates g, then qi would give the final
equilibrium geometry.  1f this is not entirely true, q; will differ from its equilibrium
value. Nevertheless, if the guesses Fg and qp are not tao far from the correct values,
a considerable improvement can be expected in q compared with qu. The
Iteration Process:

gi1=qi+ Folepy,

will then converge towards equilibrium,  Experience indicates that three or four
steps are usually sufficient to achieve the final configuration.  Suitable guesses qp
and Fy are almost always available, Note that
(@) this process does not depend on how many coordinates fall in the 4, species.
(b) the final equilibrium configuration does not depend on Fy.  Fy determines
only the rate of convergence.
The possibility of determining economically the equilibrium geometry is one of the
most attractive features of the force method.

fi. WHICH FORCE COMSTANTS SHOULD BE CALCULATED ab mitio!

Let us distinguish between the following types of force constants 1n internal
valence coordinates:

+ There are two reasonable choices for m.  First, we can choose m=M-! where M 15 2
dingonal matrix consisting of triplets of the atomic masses.  As Crawford and Fletcher have
shown [17], the centre of gravity of the molecule as well as its orientation will be left
unchanged on a displacement dg with this choice.  However, for our purposes it seems to be
mare appropriate if some of the cartesians are kept unchanged.  The number of cartesians
which can be kept constant simultaneously is equal to the number of translations and
rotations in the symmetry species; for a whole molecule 1t is six (five for a inear molecule).
m is then a diagonal matrix with zeros in the diagonal for those cartesians which have to be
kept constant and with arbitrary non-zero diagonal elements, usually 1's, elsewhere,
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Table 1. Geometry and Force Constanis of the Hydrogen Molecule Near the
Hartree—Fock Ieimit ( 7s4p2d/2b Gaussian Basis Set )’

R 1.3 1.35 1.4 1.45 1.5

E _1.1318488 —1.1332234  —1.1334654  —1.1327485  —1.131219%
dE/dR 0.0401356  0.0155367  —0.0052808  —0.0229076  —0.0378342
Property Points used Fitting From force From energy
7, All Cluartic 1.3B6507 1.3863
(dE/dR)| 4 All Quartic —(.0052808 ~0,005283
(d*EfdR™) 4 All Quartic 0.382641 0.38267
(W E/dR™), 4 All Quartic —1,27294 -1.2824
id*EfdR™), 4 All Quartic 4,3245 4,288
(dEfRY, 1,35, 1.45 Linear (38444 —

W EfdR Y . 1.35,1.4,1.45 Quadratic  —1.2763 —

[l
“lIn atomic uniss

ment that for a given exponent and n, [ quantum numbers, all functions with
the possible m quantum numbers should be included. This requirement can be
reduced to a subgroup of the rotational group only if the molecule preserves a
certain symmetry for all geometries investigated. For example, in a planar 7
system different exponents may be used for p, and p.. functions as long as the
system remains strictly planar. Note that in a Gaussian lobe basis set, rotational
invariance is only approximately fulfilled, even if the basis set contains all
functions to a given [ gquantum number and exponent. This may cause a very
small net torgue.'™

Recently application of the gradient method to semiempirical calculations
of the CNDO type has become popular.''™*"! It is appropriate to note that
gradient calculation offers even more advantages in semiempirical than in ab
initic work. Integral evaluation, which must be redone for gradient calculation,
is only a minor time consumer in CNDO, resulting in gradients at virtually no
extra cost.” "

2.6. Transformation of Cartesian Forces and Force Constants to Internal
Coordinates

Programming considerations dictate the calculation of the forces first in
Cartesian coordinates. However, the relevant quantities are the forces and
force constants in internal coordinates, typically in internal valence coordi-
nates, i.e., bond lengths and angles, out-of-plane angles are dihedral angles, or
a linear combination of them. This section deals with this transformation."™

Let X=(X,,...,Xsn) denote the set of Cartesian displacement coordi-
nates from a reference configuration, and q=1(qi,.. ., gae)” the chosen set of
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internal displacement coordinates. The forces are defined in internal coordi-
nates as ¢; = (0E/dq, ), with all g, f # i, fixed. It is clear from this definition that
the internal forces are unambiguously defined only if the internal coordinates
form a complete but nonredundant set, requiring M= 3N —6 (3N =5 for linear
molecules). In general, it makes sense to speak of an internal force ¢; only if all
coordinates g, are defined and independent.

Let us write the energy as a quadratic function of X and q:

E=E;—} f.X.+3 Y Ky XX, = E,— " X+1X'KX (30)
a b
and
E=E,—Y ¢qi+:Y Fqq,=E.—¢ q+1q'Fq (31)
i i)

where | and ¢ are the column vectors of the forces, and K and F are the
harmonic force constant matrices in Cartesian and internal coordinates,
respectively. Deviating from the usual procedure, let us retain the quadratic
terms in the expression of the internal coordinates by the Cartesian ones:

=B X+IX'CX (32)

where B; is the ith row of the matrix which relates q and X to first order,®”
q=BX; B can be easily determined.®" Substituting (32) into (31) and compar-
ing the coefficients of like terms we obtain

f=B'e (33)
and
K=B+FB—E_-:;9,-C" (34)

We cannot directly express ¢ and F from (33) and (34) because B, being a 3N
by M matrix, has no inverse. However, a set of M x 3N matrices can be defined,
all symbolically denoted by B*', having the property

BB =1y (35)
Indeed, if m is any matrix for which (BmB") is not singular* then
B*'=(BmB") 'Bm (36)
satisfies (35). Multiplying (33) and (34) by B*" we get
©=B*'f (37)
and
F=B*'KB '+ ¢,B*'C'B"’ (38)

where B~ is the transpose of (36).

“If BmB " is singular for every m then the transformation to internal coordinates is sin gular and the
chosen set of internal coordinates is not appropriate, This is the case, e.g., if we try to describe the
out of plane distortion of the BF; molecule by the sum of the three FBF angles.
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By explicitly including the six translational and rotational coordinates in
the set q, it can be shown that any of the matrices (36) yields the same internal
forces if the sum and torque of the Cartesian forces vanish, They also yield the
same internal force constants if K obeys the translational and rotational
invariance condition. The simplest choice of m is obviously the unit matrix Is .
Note that B must be calculated at the actual nuclear configuration. This
condition corresponds to the use of curvilinear internal coordinates instead of
rectilinear ones, In general, curvilinear coordinates are preferable for two
reasons: (a) the anharmonic force field is much more diagonal in curvilinear
valence coordinates: and (b) serious difficulties are encountered in the calcula-
tion of force constants in rectilinear coordinates at nonequilibrium reference
geometries (see Section 3.2.1 ).

The second term on the right-hand side of (38) is usually neglected
because it is in the equilibrium geometry that the second derivatives of the
energy are of main interest. However, as shown in Section 3, in quantum
chemical calculations it may be preferable to determine the force constants at
the experimental geometry, where the rheoretical ¢; are usually not zero. In
these cases the full equation (38) must be used. For example, consider a
diatomic molecule AB which is initially oriented along the z axis, with forces
f+=—[u acting on the nuclei. The Cartesian force constant for the coordinate
X 4 15 clearly nonvanishing: Ky =—f1/(£1—Zg). Introducing the new coor-
dinates R 4y and 3, the angle of the molecule with the z axisin the xz plane, the
first term in (38) yields a spurious nonzero rotational force constant Fyu =
R iuK .y The second term, however, exactly compensates for this.™ Note that
Cartesian and internal force constants may lead to different harmonic vibra-
tional frequencies if they are not calculated at the theoretical equilibrium
geometry. This represents an inherent ambiguity in the definition of harmonic
vibrational frequencies at a nonequilibrium geometry. The fact that a diatomic
molecule may have nonzero rotational frequency in Cartesian coordinates, but
not in valence coordinates, is a strong argument in favor of the latter.

3. Applications
3.1. Molecular Geometries and Reaction Paths

The gradient greatly facilitates the determination of molecular geometry.
If a reasonable approximation Fy to the theoretical force constant matrix is

*Recently Thomsen and Swanstrom'™ have attributed the difficulties in the transformation of
Curtesian force constants (the apparéent violation of rotational invariance) to cubic and quartic
terms in the potential energy. This is not correct hecause these terms cannat contribute to the
guadratic terms in internal coordinates, provided the transformation is smooth and nonsingular.
Their difficulties are due to the neglect of the second term in (38).
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The second term on the right-hand side of (38) is usually neglected
because it is in the equilibrium geometry that the second derivatives of the
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3. Applications
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The gradient greatly facilitates the determination of molecular geometry.
If a reasonable approximation Fy to the theoretical force constant matrix is

*Recently Thomsen and Swanstram'™"' have attributed the difficulties in the transformation of
Cartesian force constants (the apparent violation of rotational invariance) to cubic and quartic
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