Problem 10.88 ($14^{\text {th }}$ ed. $), 10.90\left(13^{\text {th }}\right.$ ed.), 10.92 ($12^{\text {th }}$ ed. $), 10.82$ ($\left.11^{\text {th }} \mathrm{ed}.\right), 10.80\left(10^{\text {th }}\right.$ ed.)
We can relate the rates of effusion of two gases to their molar masses and temperatures:

$$
\left(\frac{r_{2}}{r_{1}}\right)=\left(\frac{M_{1} * T_{2}}{M_{2} * T_{1}}\right)^{1 / 2}
$$

You can relate rate to the time it takes to effuse (inversely related) - using volume/time (L / t) as our rate we get the following:

$$
\left(\frac{r_{2}}{r_{1}}\right)=\left(\frac{\left(L_{2} / t_{2}\right)}{\left(L_{1} / t_{1}\right)}\right)=\left(\frac{\left(L_{2} * t_{1}\right)}{\left(L_{1} * t_{2}\right)}\right) \quad \text { Eqn } 2:
$$

Since in this case the volumes effusing are the same, $\mathrm{L}_{2}=\mathrm{L}_{1}$, we get the following:

$$
\left(\frac{r_{2}}{r_{1}}\right)=\left(\frac{t_{1}}{t_{2}}\right)=\left(\frac{M_{1} * T_{2}}{M_{2} * T_{1}}\right)^{1 / 2} \quad \text { Eqn 3: }
$$

Since the temperatures are equal, we get the following:

$$
\left(\frac{r_{2}}{r_{1}}\right)=\left(\frac{t_{1}}{t_{2}}\right)=\left(\frac{M_{1}}{M_{2}}\right)^{1 / 2} \quad \text { Eqn } 4:
$$

This is the step where the manual made a mistake by putting $\mathrm{t} 2 / \mathrm{t} 1$ initially, although it "selfcorrected" in the next step.

$$
\left(\frac{r_{X}}{r_{02}}\right)=\left(\frac{t_{02}}{t_{X}}\right)=\left(\frac{M_{02}}{M_{X}}\right)^{1 / 2} \quad \operatorname{Eqn} 5:
$$

This then rearranges to the following, which is what the solutions manual does have.

$$
M_{X}=\left(\frac{t_{X}}{t_{O 2}}\right)^{2} M_{O 2}=\left(\frac{105 s}{31 s}\right)^{2}(32.00)=367=3.7 \times 10^{2}
$$

