This is a discussion of end-of-chapter exercise 17.65 in the textbook. The question is,
From the value of K_{f} listed in Table 17.1, calculate the concentration of $\mathrm{Ni}^{2+}(\mathrm{aq})$ and $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ that are present at equilibrium after dissolving $1.25 \mathrm{~g} \mathrm{NiCl}_{2}$ in 100.0 mL of $1.00 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$. The K_{f} reaction is the following:

$$
\mathrm{Ni}^{2+}+6 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+} \quad \mathrm{K}_{\mathrm{f}}=1.2 \times 10^{9}
$$

The solutions manual pretty much does it correctly up to a point (with a small mistake in the molar mass of the NiCl_{2}), until they solve for the free Ni^{2+} conc. I'll go through it completely below.

First, determine how many moles of $\mathrm{NiCl}_{2}\left(\right.$ i.e. $\left.\mathrm{Ni}^{2+}\right)$ are added and the moles of NH_{3} originally present.

$$
\begin{aligned}
& 1.00 \mathrm{~mol} \mathrm{NH}_{3} \\
& ? \mathrm{~mol} \mathrm{NH}_{3}=0.1000 \mathrm{~L} \text { soln x }---------------=0.100 \mathrm{~mol} \mathrm{NH}_{3}
\end{aligned}
$$

What's the limiting reactant?: It would take $0.057 \underline{8} 7 \mathrm{~mol}$ of $\mathrm{NH}_{3}, 6\left(0.0096 \underline{4} 5 \mathrm{~mol} \mathrm{Ni}^{2+}\right)$, to react with all the Ni^{2+}. There's 0.100 mol of NH_{3} so the Ni^{2+} is the limiting reactant and it completely reacts, leaving behind excess NH_{3}. Then to find the conc. of Ni^{2+} you would reverse the reaction and look at the dissociation of the $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ in the presence of the left over NH_{3}.

Initial stoichiometry problem (in moles):

We're assuming because K_{f} is very large $\left(\mathrm{K}_{\mathrm{f}}=1.2 \times 10^{9}\right)$ this reaction essentially goes to completion.
This is where the solutions manual takes a shortcut that doesn't always work. They plug the conc. back into K_{f} and solve for the $\left[\mathrm{Ni}^{2+}\right]$. That's technically the correct way to do it and sometimes doesn't work doing it the way they did. You should really reverse the reaction (dissociation of the complex) and see how much of the complex would come apart in the presence of the left over NH_{3}.
***** continued on the next page ${ }^{* * * * *}$

Now, we'll treat this as $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ dissociating the presence of the NH_{3}. This is done in molarity. So convert the moles above to molarities (0.1000 L of solution) and use the following ICE table for the dissociation of the $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$ complex in the presence of the excess NH_{3}.

Assume " x " is small (based on the size of K_{d}),

$$
\mathrm{x}(0.4 \underline{\mathbf{2}} 129)^{6}
$$

$$
(0.09645)
$$

$\mathrm{x}=\left[\mathrm{Ni}^{2+}\right]=1.437 \times 10^{-8} \mathrm{M} \quad$ This is the conc. of free Ni^{2+} in the solution.
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}\right]=0.096 \underline{4} 5-1 . \underline{4} 37 \times 10^{-8}=0.096 \underline{4} 5 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{d}}=\frac{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}{\left[-------------\mathrm{Ni}_{3}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}=1 / \mathrm{K}_{\mathrm{f}}=1 /\left(1.2 \times 10^{9}\right)=8.333 \times 10^{-10} \\
& \mathrm{x}(0.42129+\mathrm{x})^{6} \\
& \text {------------------------- }=8.333 \times 10^{-10} \\
& \text { (0.09645-x) }
\end{aligned}
$$

