This is a discussion of end-of-chapter exercise 17.65 in the textbook. The question is,

From the value of K_f listed in Table 17.1, calculate the concentration of Ni²⁺ (aq) and Ni(NH₃)₆²⁺ that are present at equilibrium after dissolving 1.25 g NiCl₂ in 100.0 mL of 1.00 M NH₃(aq). The K_f reaction is the following:

 Ni^{2+} + 6 $NH_3 \rightleftharpoons Ni(NH_3)_6^{2+}$ $K_f = 1.2 \times 10^9$

The solutions manual pretty much does it correctly up to a point (with a small mistake in the molar mass of the NiCl₂), until they solve for the free Ni²⁺ conc. I'll go through it completely below.

First, determine how many moles of $NiCl_2$ (i.e. Ni^{2+}) are added and the moles of NH_3 originally present.

? mol Ni²⁺ = 1.25 g NiCl₂ x $\frac{1 \text{ mol NiCl}_2}{129.599 \text{ g NiCl}_2}$ x $\frac{1 \text{ mol Ni}^{2+}}{1 \text{ mol NiCl}_2}$ = 0.0096<u>4</u>5 mol Ni²⁺ ? mol NH₃ = 0.1000 L soln x $\frac{1.00 \text{ mol NH}_3}{1 \text{ L soln}}$ = 0.100 mol NH₃

What's the limiting reactant?: It would take $0.057\underline{8}7 \text{ mol of NH}_3$, $6(0.0096\underline{4}5 \text{ mol Ni}^{2+})$, to react with all the Ni²⁺. There's 0.100 mol of NH₃ so the Ni²⁺ is the limiting reactant and it completely reacts, leaving behind excess NH₃. Then to find the conc. of Ni²⁺ you would reverse the reaction and look at the dissociation of the Ni(NH₃)₆²⁺ in the presence of the left over NH₃.

Initial stoichiometry problem (in moles):

 $Ni^{2+} + 6 NH_3 \rightleftharpoons Ni(NH_3)_6^{2+}$ I = 0.009645 = 0.100 = 0 C = -0.009645 = -0.05787 + 0.009645 C = 0 = 0.04212 = 0.009645

We're assuming because K_f is very large ($K_f = 1.2 \times 10^9$) this reaction essentially goes to completion.

This is where the solutions manual takes a shortcut that doesn't always work. They plug the conc. back into K_f and solve for the $[Ni^{2^+}]$. That's technically the correct way to do it and sometimes doesn't work doing it the way they did. You should really reverse the reaction (dissociation of the complex) and see how much of the complex would come apart in the presence of the left over NH_3 .

***** continued on the next page *****

Now, we'll treat this as $Ni(NH_3)_6^{2+}$ dissociating the presence of the NH₃. This is done in molarity. So convert the moles above to molarities (0.1000 L of solution) and use the following ICE table for the dissociation of the Ni(NH₃)₆²⁺ complex in the presence of the excess NH₃.

	$Ni(NH_3)_6^{2+}$	\rightleftharpoons	Ni ²⁺	+ 6 NH ₃	
Ι	0.096 <u>4</u> 5		0	0.4 <u>2</u> 129	
С	- X		+ x	+6x	_
Е	0.096 <u>4</u> 5 - x		х	0.4 <u>2</u> 129 + 6x	
u	$[Ni^{2+}] [NH_3]^{-1}$ $[Ni(NH_3)_6^{2+}]$ $(\underline{4}2129 + x)^6$	=	1/K _f = 1/($1.2 \ge 10^9$ = 8.333 s	x 10 ⁻¹⁰

$$\frac{(0.096\underline{4}5 - x)}{(0.096\underline{4}5 - x)} = 8.333 \times 10^{-10}$$

Assume "x" is small (based on the size of K_d),

$$x (0.4\underline{2}129)^{6} = 8.\underline{3}33 \times 10^{-10}$$

$$(0.096\underline{4}5)$$

 $x = [Ni^{2+}] = 1.437 \times 10^{-8} M$ This is the conc. of free Ni²⁺ in the solution.

$$[Ni(NH_3)_6^{2^+}] = 0.096\underline{4}5 - 1.\underline{4}37 \times 10^{-8} = 0.096\underline{4}5 M$$