CHEMISTRY 1220 SOLUBILITY STUDY SESSION

- ☐ K_{sp} & MOLAR SOLUBILITY
- ☐ FACTORS INFLUENCING
 - **SOLUBILITY**
- ☐ COMMON ION EFFECT
- ☐ pH & SOLUBILITY
- ☐ COMPLEX ION FORMATION
- □ PRECIPITATION AND
 - **SEPARATION OF IONS**
- □ EXAM PREP

K_{sp} & MOLAR SOLUBILITY

Question #1

The solubility product expression for $La_2(CO_3)_3$ is $K_{sp} = ?$

Question #2

The solubility of BaF_2 is 1.3 g/L. What is the solubility product constant?

Question #3

Which compound is the **least** soluble (mol/L) in water?

- (a) $CaCO_3 K_{sp} = 2.8 \times 10^{-9}$
- (b) $PbI_2 K_{sp} = 8.7 \times 10^{-9}$
- (c) AgBr $K_{sp} = 5.0 \times 10^{-13}$
- (d) $Fe(OH)_2 K_{sp} = 8.0 \times 10^{-16}$
- (e) $Co(OH)_2 K_{sp} = 1.6 \times 10^{-15}$

Question #4

Which of the following salts has the <u>highest</u> concentration of silver ion when dissolved in water?

AgCl
$$K_{sp} = 1.6 \times 10^{-10}$$

Ag₂CO₃
$$K_{sp} = 8.1 \times 10^{-12}$$

AgBr
$$K_{sp} = 5.0 \times 10^{-13}$$

FACTORS INFLUENCING SOLUBILITY

Question #1 A solution is saturated with silver acetate, $AgC_2H_3O_2$ ($K_{sp} = 1.9 \times 10^{-3}$). Which of the following reagents will increase the solubility of silver acetate? $AgNO_3$ NaC₂H₃O₂ HNO₃ NH_3 Question #2 How many of the following salts would be more soluble in acidic solution that in pure water? BaC_2O_4 CaS AuCl₃ PbF₂ $ZnCO_3$ **Ouestion #3** Would each of the following reagents increase, decrease, of have no effect on the solubility of $Cu(OH)_2$? CuCl₂ HCl NaOH NH_3 **Question #4** Which salt solubility would be most sensitive to pH? $Ca(NO_3)_2$ CaBr₂ CaF₂ $CaCl_2$ CaI_2 **Question #5** The solubility of which of the listed salts would be unaffected by the presence of a strong acid? KClO₄ BaF₂ FePO₄ SnI₂ **Question #6** How many of the following reagents, when added to a solution in contact with solid NiCO₃ would change the solubility of NiCO₃? HCl NiCl₂ NaCl Na_2CO_3 NH_3 **Question #6** The solubility of how many of the following salts will be affected by strong acid?

Question #8

AgBr

Zinc oxalate is a slightly soluble salt. How many of the following reagents would be expected to decrease the solubility of ZnC_2O_4 ?

 $NaNO_3$

BaF₂

 $Cu_3(PO_4)_2$

Na₂C₂O₄ NH₃ NaOH HCl ZnCl₂

COMMON ION EFFECT

Question #1

What is the molar solubility of MgF₂ in 0.40 M F-? K_{sp} MgF₂ = 6.4 x 10^{-9}

Question #2

The solubility product constant for BiI_3 is 8.1×10^{-19} . Calculate the molar solubility of BiI_3 in 0.20 M $Bi(NO_3)_3$.

pH & SOLUBILITY

Question #1

The K_{sp} for $Zn(OH)_2$ is 5.0×10^{-17} . Determine the molar solubility of $Zn(OH)_2$ in buffered solution with a pH of 11.50?

Question #2

What is the pH of a saturated solution of $Cu(OH)_2$ ($K_{sp} = 2.6 \times 10^{-19}$)?

Question #3

What is the molar solubility (mol/L) of $Cr(OH)_3$ at pH = 10.00? K_{sp} for $Cr(OH)_3$ is 6.3 x 10^{-31} and K_f for $Cr(OH)_4^-$ is 8 x 10^{29} . Assume the soln is buffered at pH = 10.00. The solution to this problem assumes this.

COMPLEX ION FORMATION

Question #1

Calculate the concentration of free cadmium ion, [Cd $^{2+}$], in a solution that contains 0.20 M Cd(NO $_3$) $_2$ in 2.0 M NaCN. Cadmium ion forms the complex ion, Cd(CN) $_4$ $^{2-}$ for which K_f is 6.0 x 10^{18} .

Question #2

Calculate the molar solubility of $CdCO_3$ in 1.5 M NH₃. Note that Cd^{2+} forms the $Cd(NH_3)_4^{2+}$ complex ion for which K_f is 1.3 x 10^7 . K_{sp} for $CdCO_3$ is 5.2 x 10^{-12} .

Question #3

Calculate the molar solubility of AgCl in 12 M NH₃. K_{sp} AgCl = 1.8 x 10⁻¹⁰ K_f Ag(NH₃)₂ = 1.7 x 10⁷

Question #4

The Ag^+ ion forms the complex ion $AgCl_2^-$ for which $K_f = 2.5 \times 10^5$. Determine the equilibrium constant for the solubility of AgCl in the presence of excess chloride ion. K_{sp} of AgCl is 1.8×10^{-10} .

Question #5

Use the information from the previous problem to calculate the molar solubility of AgCl in 8.5 M HCl.

PRECIPITATION AND SEPARATION OF IONS

Question #1

A solution contains Ca^{2+} at a concentration of 2.0×10^{-4} M. If 40.0 mL of this solution is added to 25.0 mL of 5.0×10^{-3} M NaF, will a precipitate form? If 40.0 mL of the Ca^{2+} solution is added to 25.0 mL of 5.0×10^{-3} M Na $_3$ PO $_4$ will a precipitate form?

For CaF₂, $K_{sp} = 3.9 \times 10^{-11}$ For Ca₃(PO₄)₂, $K_{sp} = 2.0 \times 10^{-29}$

Question #2

Which salt precipitates first and what is the minimum concentration of Ag^+ necessary to cause this precipitation in a solution containing 7.5 mL of 0.025 M NaCl and 7.5 mL of 0.025 M Na₃PO₄?

$$K_{sp} AgCl = 1.8 \times 10^{-10} K_{sp} Ag_3 PO_4 = 1.3 \times 10^{-20}$$

Question #3

A solution contains 0.10 M Mg(NO₃)₂ and 0.10 M Ca(NO₃)₂. If solid sodium oxalate, Na₂C₂O₄, is added to the solution, what is [Ca²⁺] (M) when MgC₂O₄ begins to precipitate? (Assume no volume changes.) At 25 °C, K_{sp} of CaC₂O₄ is 2.3 x 10⁻⁹ and K_{sp} of MgC₂O₄ is 8.6 x 10⁻⁵.

Question #4

A solution contains 0.010 M Al^{3+} and 0.010 M Ag^{+} . Solid Na_3PO_4 is slowly added to separate the two cations. K_{sp} for $AlPO_4$ is 1.3×10^{-20} and K_{sp} for Ag_3PO_4 is 1.3×10^{-20} . Which cation would precipitate first, and after it precipitates, what concentration of PO_4^{3-} ion should be obtained in the solution for the best separation?