<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
span.EmailStyle18
        {mso-style-type:personal-compose;
        font-family:"Arial",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">I often get the following question from students.  How do I correctly calculate<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">the pH for something like a 1 x 10^-8 M NaOH or 1 x 10^-7 M HCl solution<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">There’s actually a homework problem like this in the additional exercises.<br>
<br>
I'll give a little hint.  While NaOH and HCl are strong acids and will completely
<br>
dissociate or ionize, these conc. are very small and close to the conc. of OH- <br>
or H+ from pure water.  Normally, with conc. of 10^-5 M or greater for the strong
<br>
acids and bases we can ignore the conc. of H+ or OH- coming from the water. <br>
As a matter of fact, if you look at the autoionization rxn for H2O it goes back to
<br>
the left when H+ or OH- is added from an outside source (acid or base) so you <br>
get even less H+ or OH- from the autoionization rxn.  This applies even for weak <br>
acids or bases, as long as their conc. are relatively high and they're not too weak.
<br>
Thus, for an acid, the conc. of H+ we normally consider is coming just from the <br>
acid and we ignore any H+ from the water itself (same for a base and OH-). <br>
<br>
However, with very small conc. of acid or base (whether strong or weak) you <br>
might not be able to ignore the H+ or OH- coming from the water. <br>
<br>
So here's the hint.  Set this up as you would for the autoionization of H2O, <br>
<br>
    H2O (l) <=>   H+ (aq) +  OH- (aq) <br>
<br>
Normally, the first line in the ICE table would have zero for both the H+ and <br>
OH- on the right.   When you add strong acid or base and their conc. are really <br>
small (close to 10^-7), treat the above problem kind of like a common-ion problem</span><br>
<br>
<span style="font-size:12.0pt;font-family:"Arial",sans-serif">(i.e. the initial conc. of the H+ or OH- in the ICE table won't be zero).
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">Lets say we have 1 x 10^-8 M HCl.  This means conc. of H+ from the strong<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">acid is [H+] = 1 x 10^-8 M.  Set up the autoionization equilibrium for H2O in<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">the following way,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">    H2O (l) <=>   H+ (aq) +  OH- (aq)
<br>
                          10^-8          0<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">       -x                  +x            +x<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">   -----------------------------------------------<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">       ----             x + 10^-8      x<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">Plug these into Kw and calculate “x”.  You will need to solve a quadratic eqn.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">The “x” is the H+ and OH- coming from water.  It will be less than that from<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">pure water.  Then you add the “x” and the 10^-8 to get the total conc. of H+.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">The total [H+] will be a little greater than 10^-7 but not by much.  You’ll see<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Arial",sans-serif">the pH will be close to 7 (a little less than 7), close to that of pure water.<br>
<br>
Dr. Zellmer<o:p></o:p></span></p>
</div>
</body>
</html>