<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<tt>Quiz 7: Chapter 23 and Chapter 21(21.1-21.4) </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>For the 11th ed. Chapter 23 (23.7) & Chapter 24
(24.1-24.6) </tt><tt><br>
is equivalent to Ch 23 in the more recent editions.<br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Section 23.1 (section 23.7 in the 11th editions):</b></tt><tt><br>
</tt><tt><br>
</tt><tt>Transition metals, properties of transition metals,
lanthanide contraction, </tt><tt><br>
</tt><tt>electron configurations and oxidation states (electrons
come out of the </tt><tt><br>
</tt><tt>s orbitals first), magnetism (understand the different
types). </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Section 23.2:</b></tt><tt><br>
</tt><tt><br>
</tt><tt>Transition-metal complexes (ligands, complex ions,
coordination cmpds), </tt><tt><br>
</tt><tt>coordination number, coordination sphere, metal-ligand
bonding (Lewis </tt><tt><br>
</tt><tt>acid-base rxns), be able to determine oxidation number and
coord. number </tt><tt><br>
</tt><tt>of the metal in a complex or coord. cmpd., geometries
(often depend on </tt><tt><br>
</tt><tt>the ligand - ligands which carry substantial negative
charge reduce the </tt><tt><br>
</tt><tt>the coord. number, i.e. # atoms directly bonded to metal
atom) </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Section 23.3:</b></tt><tt><br>
</tt><tt><br>
</tt><tt>Know what ligands are and the difference between
monodentate, bidentate</tt><tt><br>
</tt><tt>and polydentate ligands. Know the names and structures of
the most</tt><tt><br>
</tt><tt>common ligands (tables 23.4 and 23.5, for the 11th ed
tables 24.2 and 24.3).</tt><tt><br>
</tt><tt>For the bidentate ligands know oxalate, carbonate and
ethylenediamine (en).</tt><tt><br>
</tt><tt>For the polydentate ligands the most commonly seen are
triphosphate ion</tt><tt><br>
</tt><tt>and ethylenediaminetetraacetate ion (EDTA</tt><tt><sup>4-</sup></tt><tt>).</tt><tt><br>
</tt><tt>Know what chelation is.</tt><tt><br>
</tt><tt><br>
</tt><tt><b>Section 23.4:</b></tt><tt><br>
</tt><tt><br>
</tt><tt>Know how to name transition-metal (coordination) compounds.
</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Isomerism. Know what isomers are. Know the two main
groups (structural</tt><tt><br>
</tt><tt>and stereoisomers) and the 4 specific branches from these
two main</tt><tt><br>
</tt><tt>groups: coord. sphere, linkage, geometric and optical
(enantiomers).</tt><tt><br>
</tt><tt>You need to be able to draw the cmpds from the formula and
the description</tt><tt><br>
</tt><tt>given (for a coordination number of 4 I would tell you
whether it's tetrahedral,</tt><tt><br>
</tt><tt>or sq. planar). You should realize when the coord. # is 6
it has to be</tt><tt><br>
</tt><tt>octahedral. Understand what enantiomers are
(nonsuperimposable mirror images).</tt><tt><br>
</tt><tt>Know these are chiral and optically active and one is
dextrorotatory (d) and</tt><tt><br>
</tt><tt>the other would be levorotatory (l). There's no way to
tell which is which</tt><tt><br>
</tt><tt>simply by looking at them. However, if I tell you one is
(d) then it's</tt><tt><br>
</tt><tt>enantiomer has to be (l).</tt><tt> </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Section 23.5 (Color and Magnetism in Coordination
Chemistry): </b></tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Color and magnetism. Understand the color wheel (which
will be given) and </tt><tt><br>
</tt><tt>complementary colors and how this is related to the
crystal-field splitting </tt><tt><br>
</tt><tt>(size of splitting, energy, wavelength, etc.). </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Section 23.6 (crystal field theory, CFT): </b></tt><tt><b><br>
</b></tt><tt><b> </b></tt><tt><br>
</tt><tt>Remember in CFT we are looking at the metal-centered d
orbitals and the </tt><tt><br>
</tt><tt>electrons in those orbitals from the metal itself. We are
not considering </tt><tt><br>
</tt><tt>any of the electrons from the ligands when it comes to the
diagrams we use </tt><tt><br>
</tt><tt>because these electrons are in molecular orbitals which are
primarily ligand </tt><tt><br>
</tt><tt>centered (located on the ligands) and are much lower in
energy and filled. </tt><tt><br>
</tt><tt>The electron transitions we are considering are from one
d-orbital on the </tt><tt><br>
</tt><tt>metal to another d-orbital on the metal. </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>You should know how the metal "d" orbitals are split
(arranged) for linear, </tt><tt><br>
</tt><tt>tetrahedral, square planar and octahedral complexes. </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>For an octahedral crystal field energy diagram the t2 (or
t_2g) set of </tt><tt><br>
</tt><tt>orbitals (d_xy, d_xy, d_xy) are lower in energy than the e
(or e_g) set of </tt><tt><br>
</tt><tt>orbitals (d_z</tt><tt><sup class="moz-txt-sup"><span
style="display:inline-block;width:0;height:0;overflow:hidden">^</span>2</sup></tt><tt>,
d_x2-y2). </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>You should know what is meant by weak-field and
strong-field ligands and how this</tt><tt><br>
</tt><tt>effects the splitting of the e and
t<sub>2</sub> orbitals on the metal ion. You</tt><tt><br>
</tt><tt>should know what are crystal-field splitting and
spin-pairing energies and how to</tt><tt><br>
</tt><tt>determine if something will be a high-spin complex or
low-spin complex. This</tt><tt><br>
</tt><tt>depends on whether the ligand is a weak-field or
strong-field ligand (strength</tt><tt><br>
</tt><tt>of interaction between the ligand and the metal) for the
octahedral structures.</tt><tt><br>
</tt><tt>This is given by the spectrochemical series. I will give
you the spectrochemical</tt><tt><br>
</tt><tt>series on the quiz. Weak-field ligands will give a
high-spin arrangement and</tt><tt><br>
</tt><tt>strong-field ligands will give a low-spin arrangement for
an octahedral structure.</tt><tt><br>
</tt><tt><br>
</tt><tt>Remember, the tetrahedral crystal-field energy diagram
simply flips the t2 and e</tt><tt><br>
</tt><tt>sets of d orbitals compared to the octaheral splitting.
For a tetrahedral complex,</tt><tt><br>
</tt><tt>the d-orbital diagram the e set is lower in energy than the
t2 set. Also, the</tt><tt><br>
</tt><tt>crystal-field splitting energy is less than that for an
octahedral field (4/9 of</tt><tt><br>
</tt><tt>the splitting energy for an octahedral field). Thus, a
tetrahedral complex</tt><tt><br>
</tt><tt>will always be high-spin due to the smaller crystal-field
splitting energy.</tt><tt><br>
</tt><tt><br>
</tt><tt>The square-planar arrangement is given in the textbook.
The linear d-orbital </tt><tt><br>
</tt><tt>crystal field is given in the lecture notes (as are all of
the others). </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>For ligand-to-metal charge-transfer (LMCT) transitions,
electrons from</tt><tt><br>
</tt><tt>these lower ligand orbitals are excited into the d orbitals
on the metal.</tt><tt><br>
</tt><tt>This is in the Closer Look box on page 1019 (p. 1028 in the
13th ed. p. 993 in</tt><tt><br>
</tt><tt>the 12th ed., p. 1040 in the 11th ed.). I mentioned these
in class but did not</tt><tt><br>
</tt><tt>cover them. They will NOT be on the quiz or final (neither
will the MLCT</tt><tt><br>
</tt><tt>types of transitions).</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Homework coverage (you should be able to all problems in
the given ranges):</b></tt><tt><b><br>
</b></tt><tt><b> </b></tt><tt><br>
</tt><tt>For those of you using the 14th edition the quiz covers
sections</tt><tt><br>
</tt><tt>23.1-23.6 and homework problems 23.1-23.101</tt><tt><br>
</tt><tt><br>
</tt><tt>For those of you using the 13th edition the quiz covers
sections</tt><tt><br>
</tt><tt>23.1-23.6 and homework problems 23.1-23.101</tt><tt><br>
</tt><tt><br>
</tt><tt>For those of you using the 12th edition the quiz covers
sections</tt><tt><br>
</tt><tt>23.1-23.6 and homework problems 23.1-23.101</tt><tt><br>
</tt><tt><br>
</tt><tt>For those of you using the 11th edition the quiz covers
sections</tt><tt><br>
</tt><tt>23.7 and 24.1-24.6 and homework problems 23.5-23.6,
23.37-23.48,</tt><tt><br>
</tt><tt>23.53-23.56, 23.63, 23.67-23.70, 24.1-24.82</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>For the on-line homework:<br>
<br>
</b></tt><tt>Do ch 23 tutorial set. There is <b>NO</b> homework
review problem set.</tt><tt><br>
</tt><tt>The due dates were pointed out in a previous e-mail. There
is<br>
</tt><tt><b>NO</b> </tt><tt>DSM question set. Also, there are the
practice exercise #1</tt><tt><br>
</tt><tt>problems for Ch 23 (which are not for credit).</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><br>
<b>Chapter 21 (21.1-21.4):</b> </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Nuclear eqns. Types of radioactive decay and particles
(alpha, beta, </tt><tt><br>
</tt><tt>positron emission, electron capture) and gamma radiation. </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Patterns of nuclear stability (neutron-to-proton ratio,
belt of stability, </tt><tt><br>
</tt><tt>stability based on whether the number of protons and
neutrons are </tt><tt><br>
</tt><tt>even or odd, magic numbers, radioactive series. </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Nuclear transmutations (including the shorthand
representation given in </tt><tt><br>
</tt><tt>section 21.3 for the transmutation reaction), reactions
involving neutrons, </tt><tt><br>
</tt><tt>transuranium elements. </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>Rates of radioactive decay, radiometric dating, half-lifes.
</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt><b>Homework coverage (you should be able to all problems in
the given ranges):</b></tt><tt><b><br>
</b></tt><tt><b> </b></tt><tt><br>
</tt><tt>For those of you using the 14th edition the quiz covers
sections 21.1-21.4</tt><tt><br>
</tt><tt>and homework problems 21.1-21.6, 21.9-21.44, 21.71-21.72,
21.82-21.83</tt><tt><br>
</tt><tt><br>
</tt><tt>For those of you using the 13th edition the quiz covers
sections 21.1-21.4</tt><tt><br>
</tt><tt>and homework problems 21.1-21.6, 21.9-21.44, 21.71-21.72,
21.82-21.83</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>For those of you using the 12th edition the quiz covers
sections 21.1-21.4 and </tt><tt><br>
</tt><tt>homework problems 21.1-21.4, 21.7-21.42, 21.69, 21.78 </tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt>For those of you using the 11th edition the quiz covers
sections 21.1-21.4 and </tt><tt><br>
</tt><tt>homework problems 21.1-21.4, 21.7-21.42, 21.65, 21.74 </tt><tt><br>
</tt><tt> </tt><br>
<tt><tt><b>For the on-line homework:<br>
<br>
</b></tt></tt><tt>Do ch 21 tutorial set. There is <b>NO</b>
homework review problem set.<br>
The due dates were pointed out in a previous e-mail. There is </tt><br>
<tt><tt><b>NO</b> </tt>DSM question set. Also, there are the
practice exercise #1<br>
problems for Ch 21 (which are not for credit).<br>
<br>
</tt><tt> </tt><tt><br>
</tt><tt>Dr. Zellmer </tt><br>
</body>
</html>