CHEMISTRY 1220 SOLUBILITY STUDY SESSION

 K_{sp} & MOLAR SOLUBILITY
 FACTORS INFLUENCING SOLUBILITY
 COMMON ION EFFECT
 pH & SOLUBILITY
 COMPLEX ION FORMATION
 PRECIPITATION AND SEPARATION OF IONS
 EXAM PREP

K_{sp} & MOLAR SOLUBILITY

Question #1 The solubility product expression for La₂(CO₃)₃ is K_{sp} = ?

First, write the equilibrium expression. The subscript following each atom in the solid is the number of ions of that atom in solution. The total charges must add to zero:

 $La_2(CO_3)_3(s) \implies 2La^{3+}(aq) + 3CO_3^{2-}(aq)$

Given the information above and the equilibrium expression:

 $K_{sp}=[La^{3+}]^2 [CO_3^{2-}]^3$

Question #2

The solubility of BaF₂ is 1.3 g/L. What is the solubility product constant?

Conversely, K_{sp} can be calculated from either solubility or molar solubility. First, convert solubility in g/L to mol/L (M) since the concentrations used in K_{sp} are in mol/L (M). If the given solubility is already in mol/L, this step is unnecessary:

 $\begin{array}{c|c} \underline{1.3 \ g \ BaF_2} & x & \underline{1 \ mol \ BaF_2} \\ \hline 1 \ L & 175.33 \ g \ BaF_2 \end{array} = 0.0074 \ mol/L = 0.0074 \ M \ BaF_2$

From this molar concentration and the equilibrium expression, we can calculate the equilibrium concentrations of each ion using their respective coefficients in the equilibrium:

 $BaF_{2}(s) = Ba^{2+}(aq) + 2F(aq)$ 0.0074 M BaF_{2} x <u>1 mol Ba^{2+}</u> = 0.0074 M Ba^{2+} 1 mol BaF_{2} = 0.0074 M Ba^{2+} 0.0074 M BaF_{2} x <u>2 mol F</u> = 0.0148 M F

1 mol BaF₂

With these concentrations and the solubility-product expression, we can calculate K_{sp}. Don't forget the exponents!

 $K_{sp}=[Ba^{2+}][F^{-}]^{2}=(0.0074)(0.0148)^{2}=1.6 \times 10^{-6}$

Question #3 Which compound is the least soluble (mol/L) in water? (a) $CaCO_3 K_{sp} = 2.8 \times 10^{-9}$ (b) $PbI_2 K_{sp} = 8.7 \times 10^{-9}$ (c) $AgBr K_{sp} = 5.0 \times 10^{-13}$ (d) $Fe(OH)_2 K_{sp} = 8.0 \times 10^{-16}$ (e) $Co(OH)_2 K_{sp} = 1.6 \times 10^{-15}$

You can directly compare solids with the **same** ratio of cation to anion (i.e. higher K_{sp} , more soluble) to eliminate some possible answer choices. However, if the ratios differ, the molar

solubility (x) for EACH compound must be calculated using an ICE table because the lowest K_{sp} does not necessarily correspond to the lowest molar solubility.

(a) 5.29 x 10⁻⁵ mol/L
(b) 1.30 x 10⁻³ mol/L
(c) 7.07 x 10⁻⁷ mol/L
(d) 5.85 x 10⁻⁶ mol/L
(e) 7.37 x 10⁻⁶ mol/L

Of these values, (c) is the lowest. So AgBr is the least soluble (even though its K_{sp} is not the lowest).

Question #4

Which of the following salts has the <u>highest</u> concentration of silver ion when dissolved in water?

Calculate the molar concentration of **silver ion** for each of the salts.

(a) 1.26 x 10⁻⁵ M
(b) 2.53 x 10⁻⁴ M (make sure to multiply x by 2!)
(c) 7.07 x 10⁻⁷ M

Of these concentrations, (b) is the highest. So Ag_2CO_3 has the highest concentration of silver ion (Note: this is not just because silver has a subscript of 2 after it in Ag_2CO_3 ; you must calculate the actual concentration for each compound).

FACTORS INFLUENCING SOLUBILITY

Question #1

A solution is saturated with silver acetate, $AgC_2H_3O_2$ (K_{sp} = 1.9 x 10⁻³). Which of the following reagents will increase the solubility of silver acetate?

NaC₂H₃O₂ HNO₃ NH₃ AgNO₃

For problems like these, first write out the solubility equilibrium expression and see how the various reagents will influence the equilibrium. Remember, a common-ion will decrease solubility, the effect of a change in pH will depend on the particular equilibrium, and formation of a complex ion will increase solubility, trumping both the common-ion and pH effects:

 $AgC_{2}H_{3}O_{2}(s) \iff Ag^{+}(aq) + C_{2}H_{3}O_{2}(aq)$

NaC₂H₃O₂-common ion, therefore decreases solubility.

HNO₃- $C_2H_3O_2$ ⁻ is the conjugate base of a **weak** acid (HC₂H₃O₂), and is therefore a weak base itself. It can be neutralized by HNO₃, a strong acid, thereby decreasing the concentration of $C_2H_3O_2$ ⁻ and shifting the equilibrium to the right, **increasing solubility**.

NH₃- Ag⁺ forms the complex ion Ag(NH₃)₂⁺, **increasing solubility**.

AgNO₃- common ion, therefore decreases solubility.

Question #2 How many of the following salts would be more soluble in acidic solution that in pure water?

BaC₂O₄ CaS AuCl₃ PbF₂ ZnCO₃

For an acidic solution to increase solubility, it must neutralize a **weak** base. Therefore the anion must be the conjugate base of a **weak** acid. Remember, conjugate salts of **strong** acids/bases are NOT influenced by addition of acids/bases or pH changes:

BaC₂O₄- C₂O₄- is the conjugate base of the weak acid HC₂O₄. **Solubility increases**.

CaS- S²⁻ is the conjugate base of the weak acid HS-. **Solubility increases**. AuCl₃- Cl⁻ is the conjugate base of the strong acid HCl. Solubility is NOT affected.

PbF₂- F⁻ is the conjugate base of the weak acid HF. **Solubility increases**.

ZnCO₃- CO₃²⁻ is the conjugate base of the weak acid HCO₃⁻. **Solubility increases**.

Question #3 Would each of the following reagents increase, decrease, of have no effect on the solubility of Cu(OH)₂?

CuCl₂ HCl NH₃ NaOH

 $Cu(OH)_2(s) \iff Cu^{2+}(aq) + 2OH^{-}(aq)$ CuCl₂-common ion, therefore decreases solubility.

HCl- H⁺ neutralizes OH⁻, decreasing the concentration of OH⁻ and shifting the equilibrium to the right, **increasing solubility**.

NH₃- Cu²⁺ forms the complex ion Cu(NH₃)₄²⁺, **increasing solubility**.

NaOH- common ion, therefore decreases solubility.

Question #4 Which salt solubility would be most sensitive to pH?

Ca(NO3)2CaF2CaCl2CaBr2CaI2All of the cations are Ca2+, the conjugate salt of the strong base Ca(OH)2. It cannot be
neutralized by changes in pH. Of all the anions, only F- is the conjugate base of a weak acid.
The rest are conjugate bases of strong acids. Therefore CaF_2 is most sensitive to pH.

Question #5 The solubility of which of the listed salts would be unaffected by the presence of a strong acid?

KClO₄ BaF₂ FePO₄ SnI₂

Conjugate bases of **strong** acids will be unaffected by addition of a strong acid. The salts with this type of conjugate base include **KClO**₄ (HClO₄ is a strong acid) and **SnI**₂ (HI is a strong acid). BaF₂ and FePO₄ contain conjugate bases of **weak** acids and are therefore influenced by a strong acid addition.

Question #6 How many of the following reagents, when added to a solution in contact with solid NiCO₃ would change the solubility of NiCO₃?

HCl NiCl₂ NaCl Na₂CO₃ NH₃

 $NiCO_3(s) \iff Ni^{2+}(aq) + CO_3^{2-}(aq)$

HCl- This strong acid can neutralize $CO_{3^{2}}$ because this anion is the conjugate base of a weak acid. This removes $CO_{3^{2}}$, shifting the reaction to the right and **increasing solubility**.

NiCl₂- common ion, therefore **decreases solubility**.

NaCl- no effect.

Na₂CO₃- common ion, therefore **decreases solubility**.

NH₃- Ni⁺ forms the complex ion Ni(NH₃)₆²⁺, **increasing solubility**.

Question #7 The solubility of how many of the following salts will be affected by strong acid?

AgBr Cu₃(PO₄)₂ NaNO₃ BaF₂

Conjugate bases of **weak** acids will be affected by strong acid. This includes: **Cu**₃(**PO**₄)₂ **and BaF**₂.

Question #8 Zinc oxalate is a slightly soluble salt. How many of the following reagents would be expected to decrease the solubility of ZnC₂O₄? Na₂C₂O₄ NH₃ NaOH HCl ZnCl₂

 ZnC_2O_4 (s) \implies $Zn^{2+}(aq) + C_2O_{4^{2-}}(aq)$ Na₂C₂O₄-common ion, therefore **decreases solubility**.

 NH_3 - Zn^{2+} forms the complex ion $Zn(NH_3)_{4^{2+}}$, increasing solubility.

NaOH- Zn²⁺ forms the complex ion Zn(OH)₄²⁻, increasing solubility.

HCl- $C_2O_{4^{2-}}$ is the conjugate base of a weak acid (HC₂O₄-), and is therefore a weak base itself. It can be neutralized by HCl, a strong acid, thereby decreasing the concentration of $C_2O_{4^{2-}}$ and shifting the equilibrium to the right and increasing solubility.

ZnCl₂- common ion, therefore **decreases solubility**.

COMMON ION EFFECT

Question #1

What is the molar solubility of MgF₂ in 0.40 M F⁻? K_{sp} MgF₂ = 6.4 x 10⁻⁹

	$MgF_2(s)$ =	\rightarrow Mg ²⁺ (aq)	+ 2F-(aq)
Initial		0 M	0.40 M
Change		+1x M	+2x M
Equilibrium		x M	2x +0.40 M

 $K_{sp}=[Mg^{2+}][F^{-}]^{2}=(x)(\frac{2x}{4}+0.40)^{2}=(x)(0.40)^{2}=6.4 \times 10^{-9}$

 $x = 4.0 \times 10^{-8} M$

Question #2

The solubility product constant for BiI_3 is 8.1 x 10⁻¹⁹. Calculate the molar solubility of BiI_3 in 0.20 M $Bi(NO_3)_3$.

Be careful! Here, the common ion is the **cation**, unlike in the previous problems:

	Bil ₃ (s) =	➡ Bi ³⁺ (aq)	+ 31 ⁻ (aq)
Initial		0.20 M	0 M
Change		+1x M	+3x M
Equilibrium		x+ 0.20 M	3x M

 $K_{sp}=[Bi^{3+}][I^{-}]^{3}=(x+0.20)(3x)^{3}=(0.20)(27x^{3})=8.1 \times 10^{-19}$

 $x = 5.3 \times 10^{-7} M$

pH & SOLUBILITY

Question #1

The K_{sp} for $Zn(OH)_2$ is 5.0×10^{-17} . Determine the molar solubility of $Zn(OH)_2$ in buffered solution with a pH of 11.50?

First, determine the concentration of OH- when the pH is 11.50:

$\begin{array}{c} pH=-log[H^+]=11.50\\ [H^+]=3.16 \ x \ 10^{-12} \ M\\ \label{eq:H^+}[OH^-]=1.0 \ x \ 10^{-14} \ (always \ true)\\ (3.16 \ x \ 10^{-12} \ M) \ ^+][OH^-]=1.0 \ x \ 10^{-14}\\ [OH^-]=3.16 \ x \ 10^{-3} \ M\\ \end{array}$

Now, the problem is similar to a common-ion problem. However, because the solution is buffered, it **resists changes in pH.** Therefore, **the concentration of OH**⁻ **does NOT change**:

	$Zn(OH)_2(s)$ =	► Zn ²⁺ (aq)	+ 20H ⁻ (aq)
Initial		0 M	3.16 x 10 ⁻³ M
Change		+1x M	NO CHANGE
Equilibrium		x M	3.16 x 10 ⁻³ M

 $K_{sp}=[Zn^{2+}][OH^{-}]^{2}=(x)(3.16 \times 10^{-3})^{2}=5.0 \times 10^{-17}$

Question #2

What is the pH of a saturated solution of $Cu(OH)_2$ (K_{sp} = 2.6×10^{-19})?

To determine the pH, we need to determine the concentration of H⁺ using an ICE table:

	Cu(OH)2(s) 🖛	→ Cu ²⁺ (aq)	+ 20H ⁻ (aq)
Initial		0 M	0 M
Change		+1x M	+2x M
Equilibrium		x M	2x M

$K_{sp}=[Cu^{2+}][OH^{-}]^{2}=(x)(2x)^{2}=4x^{3}=2.6 \times 10^{-19}$ x= 4.0 x 10⁻⁷ M

*Remember to multiply x by 2 in this problem because the equilibrium concentration of OH is $\mathbf{2}x$:

 $[OH \cdot] = 2x = 2(4.0 \times 10^{-7} \text{ M}) = 8.0 \times 10^{-7} \text{ M}$ $[H^+][OH \cdot] = 1.0 \times 10^{-14}$ $[H^+](8.0 \times 10^{-7} \text{ M}) = 1.0 \times 10^{-14}$ $[H^+] = 1.2 \times 10^{-8} \text{ M}$ $pH = -\log[H^+] = -\log(1.2 \times 10^{-8}) = 7.9$

Question #3

What is the molar solubility (mol/L) of Cr(OH)₃ at pH = 10.00? K_{sp} for Cr(OH)₃ is 6.3 x 10⁻³¹ and K_f for Cr(OH)₄- is 8 x 10²⁹.

In this problem, a **complex ion** is formed. This effect **increases** solubility and **trumps both the common-ion and pH effects**. To determine the molar solubility of a solid whose ion forms a complex ion, we need to find the overall equilibrium expression and "overall K" for both the dissolution of the solid and the formation of the complex-ion. Identical species on opposite sides of the equilibrium arrow cancel. When "adding" two equilibria, the overall K is the product of the individual K values:

Cr(OH)3(s) - Cr³⁺(aq) + 30H-(aq)	K _{sp} =6.3 x 10 ⁻³¹
<u>Cr³+(aq)</u> + 40H (aq) ← Cr(OH ₄) (aq)	$K_f = 8.0 \times 10^{29}$
$Cr(OH)_3(s) + OH(aq) \longrightarrow Cr(OH_4)(aq)$	$K = K_{sp} \times K_{f}$
	$=(6.3 \times 10^{-31})(8.0 \times 10^{29})$
	=5.04 x 10 ⁻¹

Calculate the initial concentration of OH- from the given pH:

 $\begin{array}{c} pH=-log[H^+]=10.00\\ [H^+]=1.0 \ge 10^{-10}\,M\\ \\ [H^+][OH^-]=1.0 \ge 10^{-14} \ (always\ true)\\ (1.0 \ge 10^{-10}\,M)^+][OH^-]=1.0 \ge 10^{-14}\\ [OH^-]=1.0 \ge 10^{-4}\,M\\ \end{array}$

Now, set up an ICE table for the overall expression using the overall K. Assuming the solution is **buffered** at a pH of 10.00, the concentration of OH- will **not change**:

	Cr(OH) ₃ (s)	+ OH·(aq)	\leftarrow Cr(OH ₄)·(aq)
Initial		1.0 x 10 ⁻⁴ M	0 M
Change		NO CHANGE	+x M
Equilibrium		1.0 x 10 ⁻⁴ M	x M

 $K = [Cr(OH_4)^{-}] = \underline{x} = 5.04 \times 10^{-1}$ [OH⁻] 1.0 x 10⁻⁴

x= 5.0 x 10⁻⁵ M

COMPLEX ION FORMATION

Question #1

Calculate the concentration of free cadmium ion, $[Cd^{2+}]$, in a solution that contains 0.20 M Cd(NO₃)₂ in 2.0 M NaCN. Cadmium ion forms the complex ion, Cd(CN)₄²⁻ for which K_f is 6.0 x 10¹⁸.

To solve problems like this, you need to take a 2-step approach. First, assume **all** of the Cd^{2+} is converted to the complex ion:

	Cd ²⁺ (aq)	+	4CN [.] (aq)	 Cd(CN) ₄ ²⁻ (aq)
Initial	0.20 M		2.0 M	0 M
Change	-0.20 M		-4(0.20) M	+0.20 M
Final (NOT equilibrium)	0 M		1.2 M	0.20 M

Next, use the FINAL concentrations from the first table as the INITIAL concentrations for a new table of the REVERSE reaction (dissociation of the complex ion) to determine the equilibrium concentration of free Cd²⁺:

	$Cd(CN)_{4^{2}}(aq) \leftarrow$	= Cd ²⁺ (aq)	+ 4CN [.] (aq)
Initial	0.20 M	0 M	1.2 M
Change	-x M	+x M	+4x M
E quilibrium	0.20-x M	x M	1.2+4x M

These equilibrium concentrations refer to the reverse reaction, so they do not correspond to K_{f} , instead they correspond to K_{d} , **the dissociation constant**, which is $1/K_{f}$ (K for a reverse reaction always equals the inverse of K for the forward reaction):

 $K_{d} = \underbrace{[Cd^{2+}][CN^{-}]^{4}}_{[Cd(CN)_{4}^{2-}]} = \underbrace{(x)(1.2+4x)^{4}}_{(0.20-x)} = \underbrace{-2.07x}_{0.20} = \underbrace{-1}_{0.00}$

x= 1.6 x 10⁻²⁰ M

Question #2

35. Calculate the molar solubility of CdCO₃ in 1.5 M NH₃. Note that Cd²⁺ forms the Cd(NH₃)₄²⁺ complex ion for which K_f is 1.3 x 10⁷. K_{sp} for CdCO₃ is 5.2 x 10⁻¹².

	CdCO ₃ (s)	+ 4NH₃(aq) ←	$= Cd(NH_3)_{4^{2+}}(aq)$	+ CO ₃ ²⁻ (aq)
Initial		1.5 M	0 M	0 M
Change		-4x M	+x M	+x M
Equilibrium		1.5-4x M	x M	x M

 $\begin{array}{c} \text{K=}\underline{[Cd(NH_3)_{4^{2+}}][CO_{3^{2-}}]} = \underline{x^2} = 6.76 \text{ x } 10^{-5} \\ [NH_3]^4 & (1.5 \cdot 4x)^4 \end{array}$

x= 1.8 x 10⁻² M

Question #3 Calculate the molar solubility of AgCl in 12 M NH₃.

$K_{sp} AgCl = 1.8 \times 10^{-10}$ $K_f Ag(NH_3)_2 = 1.7 \times 10^7$					
$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq) \qquad K_{sp}=1.8 \times 10^{-10}$					
Ag	g+<mark>(aq)</mark> + 2NH₃(aq) ⊭	<u> </u>	K _f =1.7 x 10 ⁷		
Ag	$gCl(s) + 2NH_3(aq) \Leftarrow$	$= Ag(NH_3)_{2^+} + Cl^-$	$(aq) \mathbf{K} = \mathbf{K}_{sp} \mathbf{x} \mathbf{K}_{f}$		
			=3.06 x 10-	3	
	AgCl(s) +	- 2NH₃(aq) ⇐	= Ag(NH ₃) ₂ + -	+ Cl [.] (aq)	
Initial		12 M	0 M	0 M	
Change		-2x M	+x M	+x M	
Equilibrium		12-2x M	x M	x M	

 $K = [Ag(NH_3)_{2^+}][CI^-] = \underline{x^2}_{(12-2x)^2} = 3.06 \times 10^{-3}$

x= 6.6 x 10⁻¹ M

Question #4

The Ag⁺ ion forms the complex ion AgCl₂⁻ for which $K_f = 2.5 \times 10^5$. Determine the equilibrium constant for the solubility of AgCl in the presence of excess chloride ion. K_{sp} of AgCl is 1.8 x 10⁻¹⁰.

$AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$	K _{sp} =1.8 x 10 ⁻¹⁰
$Ag^{+}(aq) + 2Cl^{-}(aq) \iff AgCl_2^{-}(aq)$	$K_{f} = 2.5 \times 10^{5}$
$AgCl(s) + Cl^{-}(aq) \longleftarrow AgCl_{2}^{-}$	$K = K_{sp} x K_{f}$
	K=4.5 x 10 ⁻⁵

Question #5

Use the information from problem 41 to calculate the molar solubility of AgCl in 8.5 M HCl.

	AgCl(s) +	- Cl-(aq)	AgCl ₂ -(aq)
Initial		8.5 M	0 M
Change		-x M	+x M
Equilibrium		8.5-x M	x M

 $K = [\underline{AgCl_2}] = \underline{x} = 4.5 \times 10^{-5}$ [Cl⁻] (8.5-x)

x= 3.8 x 10⁻⁴ M

PRECIPITATION AND SEPARATION OF IONS

Question #1

To determine whether or not precipitation occurs, you need to compare K_{sp} to \mathbf{Q} , the **reaction quotient.** The equation for Q appears the same as that for K_{sp} :

Q= [products] [reactants]

However, these concentrations can be at **any** point and do **not** necessarily correspond to equilibrium concentrations, as they do for K_{sp} . K_{sp} can be thought of as a *specific* Q value that occurs at equilibrium. Q for given concentrations can be compared to K_{sp} to determine whether or not precipitation will occur:

If Q<K_{sp}, there are not enough products. The solution is **unsaturated, and the reaction will shift to the right, so NO precipitate is formed. More solid can be dissolved.
If Q=K_{sp}, the reaction is at equilibrium. The solution is **saturated.
If Q>K_{sp}, there are too many products. The solution is **supersaturated, and the reaction will shift to the left, so a precipitate will form.

A solution contains Ca^{2+} at a concentration of 2.0 x 10⁻⁴ M. If 40.0 mL of this solution is added to 25.0 mL of 5.0 x 10⁻³ M NaF, will a precipitate form? If 40.0 mL of the Ca^{2+} solution is added to 25.0 mL of 5.0 x 10⁻³ M Na₃PO₄ will a precipitate form?

For CaF ₂ ,	$K_{sp} = 3.9 \text{ x } 10^{-11}$
For $Ca_3(PO_4)_2$,	$K_{sp} = 2.0 \times 10^{-29}$

 $CaF_2(s) \iff Ca^{2+}(aq) + 2F^{-}(aq)$

The concentrations of each ion must be calculated because the volumes change once they are added together:

 $[Ca²⁺] = (2.0 \times 10^{-4} \text{ mol/L})(0.040 \text{ L}) = 1.23 \times 10^{-4} \text{ M}$ (0.040 L + 0.0250 L)

 $[F-] = (5.0 \times 10^{-3} \text{ mol/L})(0.025 \text{ L}) = 1.92 \times 10^{-3} \text{ M}$ (0.040 L + 0.0250 L)

$$Q=[Ca^{2+}][F^{-}]^{2}=(1.23 \times 10^{-4} \text{ M})(1.92 \times 10^{-3} \text{ M})^{2}=4.55 \times 10^{-10}$$

Q>K_{sp}, therefore equilibrium will shift left and a **precipitate forms**.

 $Ca_3(PO_4)_2(s) \implies 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$

 $[Ca²⁺] = (2.0 \times 10^{-4} \text{ mol/L})(0.040 \text{ L}) = 1.23 \times 10^{-4} \text{ M}$ (0.040 L + 0.0250 L)

 $[PO_{4^{3^{-}}}] = (5.0 \times 10^{-3} \text{ mol/L})(0.025 \text{ L}) = 1.92 \times 10^{-3} \text{ M}$ (0.040 L + 0.0250 L)

 $Q=[Ca^{2+}]^3[PO_4^{3-}]^2=(1.23 \times 10^{-4} M)^3(1.92 \times 10^{-3} M)^2=6.86 \times 10^{-18}$

Q>K_{sp}, therefore equilibrium will shift left and a **precipitate forms**.

Question #2

Which salt precipitates first and what is the minimum concentration of Ag⁺ necessary to cause this precipitation in a solution containing 7.5 mL of 0.025 M NaCl and 7.5 mL of 0.025 M Na₃PO₄?

 $K_{sp} AgCl = 1.8 \times 10^{-10}$ $K_{sp} Ag_3 PO_4 = 1.3 \times 10^{-20}$

To determine which salt precipitates first, we need to look at Q, **not** K_{sp} , because precipitation occurs when Q>K_{sp}, which is **not** at equilibrium. We can, however, set Q equal to K_{sp} and solve for the minimum concentration of the ion required for precipitation to occur. Whichever concentration is **lower**, that solid will **precipitate first**:

 $AgCl(s) \iff Ag^{+}(aq) + Cl^{-}(aq)$

[Cl⁻]=(0.025 mol/L)(0.0075 L)=1.25 x 10⁻² M(0.0075 L + 0.0075 L)

 $Q=[Ag^{+}][Cl^{-}]$ $1.8 \times 10^{-10}=[Ag^{+}](1.25 \times 10^{-2} \text{ M})$ $[Ag^{+}]=1.4 \times 10^{-8} \text{ M needed for AgCl to ppt.}$ $Ag_{3}PO_{4}(s) \iff 3Ag^{+}(aq) + PO_{4}^{3-}(aq)$

[PO₄³⁻]=<u>(0.025 mol/L)(0.0075 L)</u>=1.25 x 10⁻² M (0.0075 L + 0.0075 L)

 $\begin{array}{c} Q=[Ag^{+}]^{3}[PO_{4}^{3}^{-}]\\ 1.3 \ge 10^{-20}=[Ag^{+}]^{3}(1.25 \ge 10^{-2} \text{ M})\\ \hline [Ag^{+}]=1.0 \ge 10^{-6} \text{ M needed for } Ag_{3}PO_{4} \text{ to ppt.} \end{array}$

*Since the concentration of Ag⁺ needed for AgCl to precipitate is lower, it will precipitate first.

Question #3 A solution contains 0.10 M Mg(NO₃)₂ and 0.10 M Ca(NO₃)₂. If solid sodium oxalate, Na₂C₂O₄, is added to the solution, what is $[Ca^{2+}]$ (M) when MgC₂O₄ begins to precipitate? (Assume no volume changes.) At 25 °C, K_{sp} of CaC₂O₄ is 2.3 x 10⁻⁹ and K_{sp} of MgC₂O₄ is 8.6 x 10⁻⁵.

First, calculate the concentration of $C_2O_4^{2-}$ when MgC₂O₄ begins to precipitate: MgC₂O₄(s) \implies Mg²⁺(aq) + C₂O₄²⁻(aq)

> $Q=[Mg^{2+}][C_2O_4^{2-}]$ 8.6 x 10⁻⁵=(0.10 M)[C_2O_4^{2-}] [C_2O_4^{2-}]=8.6 x 10⁻⁴ M needed for MgC_2O_4 to ppt.]

Now, use this concentration of $C_2O_4^{2-}$ in the K_{sp} expression for CaC_2O_4 to determine the concentration of Ca^{2+} at this point:

 $CaC_2O_4(s) \iff Ca^{2+}(aq) + C_2O_4^{2-}(aq)$

$$K_{sp}=[Ca^{2+}][C_2O_4^{2-}]$$
2.3 x 10⁻⁹[Ca²⁺](8.6 x 10⁻⁴ M)
[Ca²⁺]=2.7 x 10⁻⁶ M

Question #4

A solution contains 0.005 M AsO₄³⁻, 0.005 M I⁻, and 0.005 M CO₃²⁻. If AgNO₃ is slowly added, in what order would the silver salts precipitate?

For Ag₃AsO₄, $K_{sp} = 1.0 \times 10^{-22}$ $K_{sp} = 8.3 \times 10^{-17}$ For AgI, For Ag_2CO_3 , $K_{sp} = 8.1 \times 10^{-12}$ $Ag_3AsO_4(s) \implies 3Ag^+(aq) + AsO_4^{3-}(aq)$ $Q = [Ag^+]^3 [AsO_4^{3-}]$ $1.0 \ge 10^{-22} = [Ag^+]^3 (0.005 \text{ M})$ $[Ag^+]=2.71 \times 10^{-7} M$ needed for Ag_3AsO_4 to ppt. $AgI(s) \implies Ag^{+}(aq) + I^{-}(aq)$ $Q=[Ag^+][I^-]$ 8.3 x 10⁻¹⁷=[Ag⁺](0.005 M) [Ag⁺]=1.66 x 10⁻¹⁴ M needed for AgI to ppt. $Ag_2CO_3(s) \implies 2Ag^+(aq) + CO_3^{2-}(aq)$ $Q=[Ag^+]^2[CO_3^{2-}]$ $8.1 \ge 10^{-12} = [Ag^+]^2 (0.005 \text{ M})$ $[Ag^+]=4.02 \times 10^{-5} M$ needed for Ag_2CO_3 to ppt.

*Lowest concentration will precipitate first: AgI precipitates first, then Ag₃AsO₄, then Ag₂CO₃.

Question #5

A solution contains 0.010 M Al³⁺ and 0.010 M Ag⁺. Solid Na₃PO₄ is slowly added to separate the two cations. K_{sp} for AlPO₄ is 1.3 x 10⁻²⁰ and K_{sp} for Ag₃PO₄ is 1.3 x 10⁻²⁰. Which cation would precipitate first, and after it precipitates, what concentration of PO₄³⁻ ion should be obtained in the solution for the best separation?

 $\begin{array}{c} AlPO_4(s) & \longleftarrow Al^{3+}(aq) + PO_4^{3-}(aq) \\ Q = [Al^{3+}][PO_4^{3-}] \\ \hline 1.3 \ge 10^{-20} = (0.010 \text{ M})[PO_4^{3-}] \\ \hline [PO_4^{3-}] = 1.3 \ge 10^{-18} \text{ M} \text{ needed for AlPO_4 to ppt.} \\ Ag_3PO_4(s) & \longleftarrow 3Ag^+(aq) + PO_4^{3-}(aq) \\ Q = [Ag^+]^3[PO_4^{3-}] \\ \hline 1.3 \ge 10^{-20} = (0.010 \text{ M})^3[PO_4^{3-}] \\ \hline [PO_4^{3-}] = 1.3 \ge 10^{-14} \text{ M} \text{ needed for Ag_3PO_4 to ppt.} \end{array}$

*Since the concentration of PO₄³⁻ needed for AlPO₄ to precipitate is lower, it will precipitate first. To ensure the best separation, [PO₄³⁻] should be as close to the higher concentration (1.3 x 10⁻¹⁴ M) WITHOUT going over that concentration. This ensures that virtually all of AlPO₄ will be solid, but no Ag⁺ will have precipitated yet into Ag₃PO₄.