Dr. Zellmer Time: 40 min ## Chemistry 1220 Summer Semester 2017 Quiz II Thursday June 22, 2017 | Name | Rec. TA/time | |------|---| | | <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit. $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K} = 8.314 \text{ J/mol} \cdot \text{K}$ | | 1. | (8 pts) The rate law for the decomposition of $AB_2 (AB_2 \rightarrow AB + \frac{1}{2} B_2)$ is | | | $r = (0.630 \text{ M}^{-1} \bullet \text{s}^{-1}) [AB_2]^2.$ | | | a) (5 pts) If the initial concentration of AB_2 is 3.00 M what will the concentration of AB_2 be (in M) after 1.00 minute? | b) (3 pts) What is the half-life (in min) for the reaction based on an initial concentration of 0.0100 M ² | | | | | | | | 2. | (3 pts) Explain how <u>raising</u> the <u>temperature increases</u> the <u>rate</u> by using the <u>Arrhenius Equation</u> . (Show this equation and use it in your explanation!) | | | | 3. (9 pts) The following mechanism has been proposed for the gas-phase reaction of bromoform, CHBr₃, and bromine. $$Br_2(g) \rightleftharpoons 2 Br(g)$$ (fast, equilibrium) $$Br(g) + CHBr_3(g) \rightarrow HBr(g) + CBr_3(g)$$ (slow) $$Br(g) + CBr_3(g) \rightarrow CBr_4(g)$$ (fast) - (a) What is the overall reaction? - (b) What are the **intermediates** in the mechanism? - (c) What is the **molecularity** of each elementary step? - (d) What is the **rate-determining step** (explain why)? - (e) What is the <u>rate law</u> predicted by this mechanism? 5. (3 pts) You are given the general rate law $r = k[A]^n$, and concentration and rate data. Convert this to a linear equation and explain how you graphically obtain k and n (i.e. what do you plot as x and y and how do you obtain **n** and **k** from the graph)? 6. (6 pts) For the following reaction $K_P = 48.5$ at 480.0 °C $$6 \text{ HCl } (g) + 3/2 \text{ O}_2 (g) \rightleftharpoons 3 \text{ Cl}_2 (g) + 3 \text{ H}_2 \text{O} (g)$$ (rxn 1) a) (3 pts) What is the value of K_P for the following reaction? Show all work or explain. $$2 \operatorname{Cl}_{2}(g) + 2 \operatorname{H}_{2}O(g) \rightleftharpoons 4 \operatorname{HCl}(g) + O_{2}(g)$$ (rxn 2) b) (3 pts) What is the value of K_C for reaction 1 at 480.0 °C? Show all work or explain. | 7 | (0 mta) | For the following reaction K_C equals 7.10 x 10 ⁻⁴ , at 25 °C. | |----|---------|--| | 1. | (o pis) | For the following feaction \mathbf{K}_C equals 7.10 x 10 , at 25 $^{\circ}$ C. | $$CaCrO_4(s) \rightleftharpoons Ca^{2+}(aq) + CrO_4^{2-}(aq)$$ a) (5 pts) What are the <u>equilibrium</u> concentrations of Ca^{2^+} and $CrO_4^{2^-}$ if solid $CaCrO_4$ is placed in water to form a saturated solution at 25 °C? (Show the ICE table. When appropriate, state any assumptions made and check your percent error.) b) (1 pt) For the system at equilibrium, what happens when CaCl₂(s), a soluble compound, is added?? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!** c) (1 pts) Assume the above reaction is endothermic. For the system at equilibrium, what happens to the reaction when the temperature increases? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!** d) (1 pt) For the system at equilibrium, what happens when part of the $CaCrO_4$ is **removed**? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!** $$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0} \qquad [A]_t = -kt + [A]_0 \qquad \ln[A]_t = -kt + \ln[A]_0$$ $$t_{\frac{1}{2}} = \frac{0.693}{k}$$ $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$ $t_{\frac{1}{2}} = \frac{1}{k[A]_0}$ | | IA | IIA | IIIB | IVB | VB | VIB | VIIB | | VIIIB | | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |---|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | 1 | 1.008
H
1 | | | | | | | | | | | | | | | | | 4.003
He
2 | | 2 | 6.941
Li
3 | 9.012
Be
4 | | | | | | | | | | | 10.811
B
5 | 12.011
C
6 | 14.007
N
7 | 15.999
O
8 | 18.998
F
9 | 20.179
Ne
10 | | 3 | 22.990
Na
11 | 24.305
Mg
12 | | | | | | | | | | | 26.98
Al
13 | 28.09
Si
14 | 30.974
P
15 | 32.06
S
16 | 35.453
Cl
17 | 39.948
Ar
18 | | 4 | 39.098
K
19 | 40.08
Ca
20 | 44.96
Sc
21 | 47.88
Ti
22 | 50.94
V
23 | 52.00
Cr
24 | 54.94
Mn
25 | 55.85
Fe
26 | 58.93
Co
27 | 58.69
Ni
28 | 63.546
Cu
29 | 65.38
Zn
30 | 69.72
Ga
31 | 72.59
Ge
32 | 74.92
As
33 | 78.96
Se
34 | 79.904
Br
35 | 83.80
Kr
36 | | 5 | 85.47
Rb
37 | 87.62
Sr
38 | 88.91
Y
39 | 81.22
Zr
40 | 92.91
Nb
41 | 95.94
Mo
42 | 98
Tc
43 | 101.07
Ru
44 | 102.91
Rh
45 | 106.42
Pd
46 | 107.87
Ag
47 | 112.41
Cd
48 | 114.82
In
49 | 118.69
Sn
50 | 121.75
Sb
51 | 127.60
Te
52 | 126.90
I
53 | 131.39
Xe
54 | | 6 | 132.91
Cs
55 | 137.33
Ba
56 | 138.91
La
57 | 178.39
Hf
72 | 180.95
Ta
73 | 183.85
W
74 | 186.21
Re
75 | 190.23
Os
76 | 192.22
Ir
77 | 195.08
Pt
78 | 196.97
Au
79 | 200.59
Hg
80 | 204.38
Tl
81 | 207.2
Pb
82 | 208.98
Bi
83 | 209
Po
84 | 210
At
85 | 222
Rn
86 | | 7 | 223
Fr
87 | 226.03
Ra
88 | 227.03
Ac
89 | 261
Rf
104 | 262
Ha
105 | 263
Sg
106 | 262
Ns
107 | 265
Hs
108 | 266
Mt
109 | 269
110 | 272
111 | 277
112 | | | | | | | | Lanthanide
Series | 140.12
Ce
58 | 140.91
Pr
59 | 144.24
Nd
60 | 145
Pm
61 | 150.36
Sm
62 | 151.96
Eu
63 | 157.25
Gd
64 | 158.93
Tb
65 | 162.50
Dy
66 | 164.93
Ho
67 | 167.26
Er
68 | 168.93
Tm
69 | 173.04
Yb
70 | 173.04
Lu
71 | |----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|---------------------------|---------------------------|---------------------------| | Actinide
Series | 232.04
Th
90 | 231.04
Pa
91 | 238.03
U
92 | 237.05
Np
93 | Pu
94 | Am 95 | Cm
96 | Bk
97 | Cf
98 | Es
99 | Fm 100 | Md
101 | No
102 | Lr
103 | A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)