<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Hi all,</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">This week in CaCL we'll be discussing Patel and Pavlick (2022) "Mapping Language Models
 to Grounded Conceptual Spaces". </span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Here's the link to the paper:
<a href="https://openreview.net/pdf?id=gJcEM8sxHK" id="LPlnk293972">https://openreview.net/pdf?id=gJcEM8sxHK</a></span></div>
<div class="elementToProof"><br>
</div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Abstract: </span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">A fundamental criticism of text-only language models (LMs) is their lack of grounding—that
 is, the ability to tie a word for which they have learned a representation to its referent in the non-linguistic world. However, despite this limitation, large pre-trained LMs have been shown to have a remarkable grasp of the conceptual structure of language,
 as demonstrated by their ability to answer questions, generate fluent text, or make inferences about entities, objects, and properties that they have never physically observed. In this work we investigate the extent to which the rich conceptual structure that
 LMs learn indeed reflects the conceptual structure of the non-linguistic world—which is something that LMs have never observed. We do this by testing whether the LMs can learn to map an entire conceptual domain (e.g., direction or colour) onto a grounded world
 representation given only a small number of examples. For example, we show a model what the word “left” means using a textual depiction of a grid world, and assess how well it can generalise to related concepts, for example, the word “right”, in a similar
 grid world. We investigate a range of generative language models of varying sizes (including GPT-2 and GPT-3), and see that although the smaller models struggle to perform this mapping, the largest model can not only learn to ground the concepts that it is
 explicitly taught, but appears to generalise to several instances of unseen concepts as well. Our results suggest an alternative means of building grounded language models: rather than learning grounded representations “from scratch”, it is possible that large
 text-only models learn a sufficiently rich conceptual structure that could allow them to be grounded in a data-efficient way</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">See you Thursday,</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Sara</span></div>
</body>
</html>