<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
Dear CaCL members,</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
This week, we'll be discussing the following paper:</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<b>Syntax and Geometry of Information</b> (Bailly et al., 2023)<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof ContentPasted1">
<a href="https://aclanthology.org/2023.acl-long.590.pdf" id="LPlnk119078" data-loopstyle="linkonly" class="OWAAutoLink">https://aclanthology.org/2023.acl-long.590.pdf</a><br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof ContentPasted1">
This paper presents an information-theoretical model of syntactic generalization. We study syntactic generalization from the perspective of the capacity to disentangle semantic and structural information, emulating the human capacity to assign a grammaticality
judgment to semantically nonsensical sentences. In order to isolate the structure, we propose to represent the probability distribution behind a corpus as the product of the probability of a semantic context and the probability of a structure, the latter being
independent of the former. We further elaborate the notion of abstraction as a relaxation of the property of independence. It is based on the measure of structural and contextual information for a given representation. We test abstraction as an optimization
objective on the task of inducing syntactic categories from natural language data and show that it significantly outperforms alternative methods. Furthermore, we find that when syntax-unaware optimization objectives succeed in the task, their success is mainly
due to an implicit disentanglement process rather than to the model structure. On the other hand, syntactic categories can be deduced in a principled way from the independence between structure and context.<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
<br>
</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
Best,</div>
<div style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);" class="elementToProof">
Byung-Doh</div>
<div class="elementToProof">
<div id="Signature">
<div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div></div>
<div></div>
<div></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<span style="font-family:"Lucida Sans Unicode","Lucida Grande",sans-serif; font-size:10pt">=================</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<span style="font-size:10pt"></span><span style="font-size:11pt"></span><span style="font-family:"Lucida Sans Unicode","Lucida Grande",sans-serif; font-size:10pt"><b>Byung-Doh Oh</b> (he/him/his)</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<span style="font-size:10pt"></span><span style="font-size:11pt"></span><span style="font-family:"Lucida Sans Unicode","Lucida Grande",sans-serif; font-size:10pt">Ph.D. Candidate</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<span style="font-size:10pt"></span><span style="font-size:11pt"></span><span style="font-family:"Lucida Sans Unicode","Lucida Grande",sans-serif; font-size:10pt">Department of Linguistics</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<span style="font-size:10pt"></span><span style="font-size:11pt"></span><span style="font-family:"Lucida Sans Unicode","Lucida Grande",sans-serif; font-size:10pt">The Ohio State University</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
</div>
</div>
</div>
</body>
</html>