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4 We use u for convenience to include the set of recurrent weights, Wr,

the set of input weights Wi, the set of output weights Wo, and all other

learnable parameters such as biases.
It has long been speculated that the backpropagation-of-error

algorithm (backprop) may be a model of how the brain learns.

Backpropagation-through-time (BPTT) is the canonical

temporal-analogue to backprop used to assign credit in

recurrent neural networks in machine learning, but there’s even

less conviction about whether BPTT has anything to do with the

brain. Even in machine learning the use of BPTT in classic

neural network architectures has proven insufficient for some

challenging temporal credit assignment (TCA) problems that

we know the brain is capable of solving. Nonetheless, recent

work in machine learning has made progress in solving difficult

TCA problems by employing novel memory-based and

attention-based architectures and algorithms, some of which

are brain inspired. Importantly, these recent machine learning

methods have been developed in the context of, and with

reference to BPTT, and thus serve to strengthen BPTT’s

position as a useful normative guide for thinking about temporal

credit assignment in artificial and biological systems alike.
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Introduction
Synaptic physiology helps to explain the rules and pro-

cesses underlying individual synaptic changes, but it does

not explain how these changes coordinate to achieve a

network’s goal [1–3]. The backpropagation (backprop)

algorithm was introduced as a solution to this coordination

problem in artificial deep neural networks [4–7]. Back-

prop efficiently computes the effect of slight changes to

each synapse on a network’s deviation from its goal (also

known as its error), taking into account the effects of these

changes on all downstream neurons. It then uses the
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results of the computations to make small synaptic mod-

ifications to reduce the network’s error. Thus, backprop

solves the credit assignment problem by determining the

role of each synapse in contributing to the network’s

overall performance. Backprop has a temporal analogue

known as backpropagation-through-time (BPTT), which

solves the temporal credit assignment (TCA) problem in

recurrent neural networks (RNNs) [8,4,9,10].

Backprop and BPTT’s enormous success in artificial

neural networks has led many to consider their potential

role in explaining learning in the brain [11,12,4]. While

the precise connections between backprop and the

brain remain unclear, recent results in neuroscience

and machine learning (ML) have renewed researchers’

enthusiasm for using it to help explain learning in biolog-

ical networks [13–16]. The role of BPTT in explaining

learning through time in the brain, however, has particu-

lar problems not faced by feedforward backprop, and its

relationship to the brain is less well studied in general.

Nonetheless, BPTT-based approaches have solved an

expanding set of difficult problems that require sophisti-

cated temporal credit assignment. BPTT underlies

everything from text-to-speech [17], translation [18],

and learning to solve control problems that demand

memory [19��,20]. Successful approaches in these tem-

poral domains are sometimes inspired by biological con-

siderations and simultaneously hint at formal ways to

understand temporal credit assignment in the brain.

Recurrent neural networks and
backpropagation through time
An RNN’s self-connections cause neuron activities (the

RNN’s state) to reverberate as time passes. In machine

learning we typically discretize the state changes, com-

puting them using the activities at the previous discrete

time-step and the synaptic weights (this is known as

‘unrolling’ the network — see Figure 1):

ht ¼ f ðxt ; ht�1; uÞ: ð1Þ

Here h denotes a vector of activity states (indexed by time

in the subscript, where T is the final time-point in a

sequence), x is the network input, and u are the synaptic

weights, also known as the learnable parameters.4
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Figure 1

Recurrent neural networks and BPTT. (a) depicts a simple recurrent network. Self-connections, or recurrent-connections cause input activity to

feed back into the network, producing evolving activity dynamics. The network’s output can be compared to a target output to compute the error

(here shown at every timestep). (b) depicts an unrolled network and the gradients that arise from computing the effect of various network

components on the output error. These gradients flow backwards through the network and help inform synaptic updates that reduce the

network’s error. An important focus of BPTT involves the hidden state gradients, @htþ1

@ht
, which multiplicatively compound to produce vanishing or

exploding signals.
The goal of BPTT is to compute the partial derivatives of

the error with respect to the synaptic weights, known as

the ‘gradients’, @E
@u
. The network improves its performance

by learning through ‘gradient descent’; nudging the syn-

aptic weights in the negative direction of the gradient

reduces the network’s error. We will not derive BPTT,

but rather, will highlight a specific aspect that has drawn

the focus of much the research into training RNNs. When

using the chain rule to compute the gradients of the

recurrent parameters for a standard RNN (e.g. ht = s
(Wrht�1 + Wixt)), we have an intermediate term @E

@ht
that

computes the gradient of the error with respect to the

activity states:

@E

@ht
¼ @E

@hT

@hT
@ht

¼ @E

@hT

YT�1

k¼t

@hkþ1

@hk
ð2Þ

¼ @E

@hT

YT�1

k¼t

diagðs0ðhtþ1ÞÞWT
r ; ð3Þ

The important part to note is in Eqn. (3), where we have

an iterated product of matrices, including the matrix

denoting the network’s recurrent synaptic weights

Wr. As noted in [21], similar to how iterated products

of real numbers can explode to infinity or vanish to zero,

iterated products of matrices can explode or vanish along

some vector direction (in particular, the directions corre-

sponding to the eigenvectors with the leading eigenva-

lues of the recurrent weight matrix). Thus, the learning

signal for the network (the gradient) either becomes less

and less useful over time due to vanishing, or causes
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massive instability due to explosion. In the case of van-

ishing, while the gradient with respect to the recurrent

weights may be non-zero, the gradient of one recurrent

state with respect to another decreases exponentially with

the number of intervening timesteps, implying exponen-

tially more training time to assign credit to events that

occurred long in the past. While RNNs are powerful

models, exploding and vanishing gradients can make

them difficult to optimize for useful memory formation

and retrieval, which in turn can prevent them from being

practically useful. A solution to this ‘accumulating

gradient’ problem is critical for developing models that

can assign credit across minutes, hours, or even days,

which we know is possible in humans and animals.

Thus, fundamental research on learning in recurrent

networks has focused on taming exploding or vanishing

gradients, whose effects are especially problematic over

long time scales [22]. Two categories of approaches are

those based on network design, and optimization.

Among network-based approaches, echo state networks

have fixed recurrent weights that do not undergo learning,

and hence avoid this problem at the expense of network

expressivity [23]. Unitary RNNs constrain the recurrent

weight matrices to be unitary, wherein the eigenvalues

are equal to 1, so that the matrix products do not cause

explosion or vanishing [24]. Initialization schemes that,

for example, set the initial weight matrix to be orthogonal

produce better behaved gradients, at least at the begin-

ning of training [25,26]. Long short-term memory net-

works (LSTMs) and Gated Recurrent Units generally

[27–30] use ‘gates’ — special neurons that control the flow

of information into recurrent ‘memory’ neurons. These

memory units can hold information for long periods,
Current Opinion in Neurobiology 2019, 55:82–89
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Figure 2

Truncated backpropagation through time (TBPTT). In TBPTT gradients are computed within a small window of time so as to reduce memory

requirements and limit the explosion or vanishing effects of accumulating hidden state gradients. A consequence of TBPTT is that gradient

propagation is halted between truncation windows. Consider a task wherein some probe input needs to be pattern-completed at some later point

in time such that it matches a previous input (here it is the green square containing the ‘C’). If the network produces the incorrect letter (depicted

as ‘B’ here), then there is no way for the gradients to reach back to the point of encoding of the green-square-C input, and hence no way for the

network to learn to better encode and store this information for later use.

5 Since the inputs aren’t preserved, there is no way to train the

network’s input synaptic weights. Also, the retrieved activities must

be noiseless, which is not the case in the brain. Even further, the number

of replayed events is much fewer than those expected by even TBPTT
allow the gradient of the error with respect to the held

value to remain independent of computations in inter-

vening timesteps, and may have analogs in cortical micro-

ciruitry [31].

Among the optimization-based approaches, gradient clip-

ping upper bounds the gradients by clipping them to

some threshold value [32,21]. Among the most commonly

employed mechanisms, Truncated BPTT (TBPTT)

(Figure 2) implements BPTT on small time windows

so that the number of products in Eqn. (3) is kept small,

and hence is less prone to exploding or vanishing gradi-

ents, at the expense of not being able to assign credit to

events outside the truncation window [9,33,34]. One

consequence of TBPTT is an inability to assign credit

outside of the truncation window, even in situations

where the gradients would not vanish.

Although these approaches have proved fruitful in

machine learning, neuroscientists may not be satisfied.

Perhaps the biggest problem is that the network must still

store and retrieve, with perfect accuracy, the values of its

activities from all points in past. In a feedforward network

learning with backprop this storage problem is slightly

more plausible, since the activity states live in unique sets

of neurons. However, for RNNs learning with BPTT the

same neurons must store and retrieve their entire activa-

tion history. TBPTT ameliorates this by reducing the size

of the history, but even still, practically the history must

be many tens of steps.
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In the brain there does seem to be evidence that sequen-

tial bouts of activity are stored and replayed (both for-

wards and backwards) in the medial temporal lobe, and in

some cases the cortex [35,36,37,38,39,35–39,65�]. These

replay events are often proposed to be useful for systems

consolidation — a memory encoding process wherein the

medial temporal lobe transforms and transfers stored

memories to the cortex [40,41] — and for planning and

reinforcement learning more generally. It’s not clear

whether the kind of memory replay events observed

empirically are sufficient to support BPTT5, though

compressed, backwards replay of sequences might sug-

gest that BPTT-like TCA is not unreasonable.

A less known class of TCA methods uses forward-mode
differentiation (as opposed to the backwards-mode differ-

entiation used in BPTT) to forego the storage of hidden

states entirely [42]. As networks run forward in time the

sensitivity of their state on the parameters, @ht/@u, is

computed and maintained online, often with synaptic

weight updates being applied at each time step in which

there is a non-zero error. The canonical forward-mode

algorithm is called real-time recurrent learning (RTRL).

While RTRL solves one problem by obviating the need

for hidden state storage and replay, it introduces another:

the propagated sensitivities can be extremely large: a
www.sciencedirect.com
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network with N recurrent units requires OðN3Þ storage

and OðN 4Þ computation at each time-step to maintain

accurate sensitivities, which appears unfeasible. A num-

ber of other algorithms, such as Unbiased Online Recur-

rent Optimization (UORO) [43,44�,45], have since built

off RTRL’s scaffolding, using approximate but unbiased

gradient estimates to reduce computation and storage

requirements. The ideas in these algorithms are con-

nected to the notion of learning via eligibility trace

maintenance [46], and may help indeed inform our views

of how the brain does TCA, at least at shorter time-scales.

Altogether, some combination of the aforementioned

methods — TBPTT, gated RNNs, etc. — can induce

successful learning over short time-scales in artificial

networks. However, they struggle with long time-scale

learning because of scaling issues, or inevitably problem-

atic gradients. While online methods such as RTRL and

its approximations are interesting, they also succumb to

issues related to accumulating gradients and typically

require ad hoc approaches which forget sensitivities from

far in the past in order to work. A new wave of research

addressing learning over long time-scales in artificial net-

works has turned to brain-inspired mechanisms, such as

content addressable memory and attention, for inspira-

tion. In turn, this research casts new light on these

mechanisms in the brain, and their potential role in

implementing TCA.

Long-term temporal credit assignment using
memory and attention
To assign credit to states from long in the past, networks

need a mechanism to propagate gradient information

from the present with high-fidelity. Gated RNNs, such

as LSTMs and GRUs, proposed ‘memory cells’, which

are hidden states that can remain unchanged for long

periods of time, and hence render the gradient of the error

with respect to their value to be independent of the

computations in intervening timesteps. However, Gated

RNNs are tasked with both storing information in their

memory cells and using this stored information to com-

pute relevant information for the current output. In

practice, this dual purposing of the hidden state (compu-
tation vs. storage) can greatly hinder learning over long

time periods.

Attention-based models offload the storage problem by

supposing that the hidden states are stored somewhere

outside the network, but are nonetheless readily accessi-

ble at any point in time [47��,48��]. These networks then

use current network activity to attend to one or more of

these stored previous hidden states, and the attended

states are used to update the current state. More impor-

tantly, from a learning perspective this mechanism estab-

lishes a ‘skip-connection’ from the current state to the

attended state; gradients can propagate along this skip-

connection instead of through every intervening hidden
www.sciencedirect.com 
state (and the intervening non-linearities), and hence can

bypass any problems related to accumulating gradients.

In straightforward applications of this method the skip-

connected gradients are considered in addition to the

intervening accumulated gradients; however, some

recent work has explored avoiding these accumulated

gradients altogether [49].

Attention-based models are of course easy to implement

in a computer, wherein hidden states are simply stored in

the computer’s memory. Taking inspiration from the

brain’s memory systems, recent models propose augment-
ing Gated RNNs with their own large external memory

storage that can be read from and written to [50,51��,52],
thus, treating the external memory as a component of

the network itself. Rather than detail a particular model,

we introduce the essential concepts that are common

across many models that employ external memory. In a

simple version of such an idea the external memory

encodes the RNN’s hidden state, growing linearly with

the number of time-steps, and hence with the number of

states realized by the network:

Mt ¼ fMt�1; htg ð4Þ

where curly braces denote an append operation. The

memory matrix is then included in the RNN state update:

ht = f(xt, ht�1, Mt�1 ; u). See Figure 3, which demonstrates

how this helps propagate gradient information back

through time. This kind of simple writing mechanism

demands more memory and compute as time goes on [53].

Other augmented memory architectures use a fixed num-

ber of slots that are updated rather than appended to

[50,51��,54], or are explicitly designed for distributed

and compressive writing [55].

Once we augment a network with a large external mem-

ory it needs to be able to query the memory to retrieve

relevant data. Given the simple writing approach describ-

ed above, a retrieval mechanism can work as follows.

Suppose the current hidden state produces a query vector

qt, for example, via a linear transformation of the current

hidden state, qt = Wqht. One can then compute the simi-

larity of this query to each memory using a distance metric

to produce ‘attention weights’, which are then used to

‘read’ memories,

Compute weights : wt ½i� ¼ dðqt ; Mt�1½i; :�Þ

Read memories : r t ¼
X

i

wt ½i�Mt�1½i; :�; ð5Þ

which update the current hidden state and the output of

the network at that timestep. Note that in Figure 3 we

picture the retrieval of memories as a discrete choice, but
Current Opinion in Neurobiology 2019, 55:82–89
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Figure 3

Gradient skip-connections through memory. RNNs augmented with external memories allow for high fidelity recall and gradient propagation.

Suppose a memory at ht�2 is encoded and later used at hT�1. Since the content of the memory is unchanged during this time, the gradient with

respect to this memory is not dependent on any computations that occur between memory writing and memory retrieval. This high-fidelity

gradient can then be used to inform learning at the time of encoding. Conversely, if the gradient needed to pass through the intermediary hidden

states, then it would suffer the consequences of accumulating gradients. Depicted on the right is a potential mechanism for using attention to

read from memory: (1) queries attend to each memory using a distance function d(qT, ht); (2) the distance is used as an attention weight to

compute a weighted sum of memories; (3) the weighted sum of memories update the original hidden state.
in practice it is a ‘soft’ blend to allow gradients to flow

nicely.

A non-parametric memory that simply appends new

hidden state activations as they arrive has a constant

number of learnable synaptic weights. The size of the

memory only factors into the attention-based ‘reading’,

which is a parameter-free computation since the compu-

tation of the query qt takes place before reading and

requires the same number of parameters irrespective of

the number of memories. In Gated RNNs, on the other

hand, the number of learnable parameters scales with the

size of memory. Offloading storage requirements to an

external memory has benefits beyond the separation of

computation and storage: if the network can guarantee

that stored information remains untouched, then gradi-

ents passing from the time of memory retrieval back to

the time of memory encoding will be of high quality, and

will not have succumbed to any accumulation issues. Just

how large memories and temporal credit assignment

mechanisms should interact is an area of active research.

As memory size grows full BPTT becomes increasingly

problematic [53]. TBPTT is still straightforward, but in

this case credit assignment will not reach those memories

that were encoded and written in the distant past. In this

case, some approaches learn to encode input data using

local-in-time credit assignment and trust that it will

be useful to retrieve and use this data in the future

[56,53,20]. Unsupervised objectives may also help shape

encoded memories when task-oriented feedback is only

infrequently available [20] (e.g. outside a models trunca-

tion window).
Current Opinion in Neurobiology 2019, 55:82–89 
The notion of using external memory storage to encode

memories for later retrieval is not unfathomable from a

biological perspective. In the medial temporal lobe the

hippocampus is thought to encode memories by estab-

lishing attractor states in the CA3 (akin to the aforemen-

tioned ‘writing’) [57,51��]. In turn, partial reactivation

(akin to the aforementioned ‘querying’) of these CA3

attractors induces re-activation of the neocortical neurons

responsible for the initial encoding [58]. Thus, one can

imagine a situation wherein gradient information in neo-

cortical circuits is ‘transported’ back to the neocortical

states at the time of memory encoding using a process

mediated by hippocampal-based memory retrieval.

BPTT, temporal credit assignment, and
reinforcement learning
Reinforcement learning (RL) scenarios — wherein an

agent interacts with an environment and learns better

behavioral policies by correlating actions with environ-

ment rewards — have different TCA considerations

compared to many non-RL regimes. In particular, the

model-environment ‘loop’ in RL typically has a number

of non-differentiable components that usually do not

permit gradient signal propagation, such as the environ-

ment itself and the stochastic process of choosing an

action from a policy distribution (though see [59,60] for

differentiable stochastic categorical sampling, and [61,62]

for control approaches using differentiable environment

models) (see Figure 4). Since there is only a ‘gradient

path’ through a model’s hidden states and not through

its sampled actions and the environment, an agent may

have difficulty computing the effect of its actions on the

environment, and hence with assigning credit to actions
www.sciencedirect.com
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Figure 4

BPTT and reinforcement learning. Reinforcement learning (RL) frameworks can be built on top of standard BPTT frameworks. Importantly, many

RL components are non-differentiable (e.g. one cannot pass gradients through the environment or action sampling), making it impossible for a

model to compute the effect of its actions on future rewards using BPTT. Instead, RL algorithms correlate actions with future rewards, which is a

noisy process with high variance when actions and consequences are separated by long delays. Some new algorithms, such as Temporal Value

Transport (TVT) [63�], can ameliorate these difficulties by delivering value information along temporal skip-connections (using, for example, the

strength of memory read events to determine the connections); this value information is then used to increase the signal-to-noise ratio of normal

BPTT-based policy-gradient learning.
taken far in the past even if they are directly responsible

for eventual reward.

RL algorithms often make use of Monte-Carlo rollouts

and bootstrapping to overcome this difficulty. For exam-

ple, past states and actions can be assigned value because

at some future point reward will be received. This value

can then be used to inform certain actions over others.

However, this process is based on correlations between

current states and actions and future rewards, as opposed

to the explicit computations afforded should the process be

amenable to full BPTT. These correlations can have high

variance, especially if the future horizon is long and filled

with unrelated intermediary reward signals, making this

approach unfeasible in certain circumstances.

New methods have also begun to explore the use of

attention-based and memory-based systems to overcome

downsides of RL’s correlative algorithms. The funda-

mental idea underlying them is the ‘transport’ of reward

signals to within a close temporal window of relevant past

states so as to allow BPTT to more accurately compute
www.sciencedirect.com 
the credit to assign to the actions chosen in these states

[63�,64]. Memory systems can be used to form links

between the present and the distant past, similar to the

mechanism described in the previous section and in

Figure 3. However, instead of forming a skip-connection

along which gradients can propagate, these memory links

are used to signal avenues along which reward can be

transported so as to make local-in-time credit assignment

more effective.

Conclusion
By tackling increasingly difficult problems, practical inno-

vations in ML have used biology-inspired solutions to

TCA. These solutions may in turn help guide our under-

standing of credit assignment in the brain. Ultimately

we expect that agents and animals alike will not adhere to

strict formulations of BPTT. This does not imply that

BPTT should not remain a canonical guide to TCA; even

when full differentiation through time isn’t possible,

innovation should be guided towards its approximation,

and progress should be gauged with the bar set by its

hypothetical possibility.
Current Opinion in Neurobiology 2019, 55:82–89
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