
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

A Bayesian Sequence Model for Grammar Induction using Human-like
Memory Constraints

Anonymous ACL submission

Abstract

This paper describes an application of a
depth-bounded left-corner parsing strategy
to a grammar induction task. The pro-
posed model is severely constrained to a
single memory element, allowing no cen-
ter embedding but unlimited left and right
embedding, which may resemble mem-
ory constraints of early language learners.
Despite this severe constraint, the model
described in this paper still manages to
perform competitively with unconstrained
models on an existing task of acquiring
grammar from short (ten-word or fewer)
sentences.

1 Introduction

Grammar induction is often approached using
chart parsing techniques (Klein and Manning,
2002), which allow any pair of adjacent spans to
be hypothesized as a constituent. As a result, trees
with any amount of center-embedding recursion
can be induced by these models. However, cen-
ter embedding is known to be difficult for human
sentence processing (Chomsky and Miller, 1963;
Karlsson, 2007), leading to famously difficult sen-
tences like ‘[NP The cart [NP the horse [NP the
man] bought] pulled] broke.’ Sentence process-
ing models proposed in the cognitive modeling
community therefore often use variants of a left-
corner parsing strategy (Aho and Ullman, 1972;
Johnson-Laird, 1983; Abney and Johnson, 1991;
Gibson, 1991; Henderson, 2004; Lewis and Va-
sishth, 2005; Schuler et al., 2010), which iso-
late and apply memory constraints to such embed-
dings.

This paper describes an application of a depth-
bounded left-corner parsing strategy to a grammar
induction task. The proposed model is severely

constrained to a single memory element, allowing
no center embedding but unlimited left and right
embedding. This severe constraint may resem-
ble memory constraints of early language learn-
ers. This constrained model may also function
as a base case for a more complex model, able
to hypothesize multiple center embeddings using
hierarchical priors which depend on the learnabil-
ity of a depth-one model as a necessary precondi-
tion. Despite the severe constraint of only a single
depth level in processing, the model described in
this paper still manages to perform competitively
with unconstrained models on an existing task of
acquiring grammar from short (ten-word or fewer)
sentences.

The remainder of this paper is organized as fol-
lows. Section 2 describes some related work on
grammar induction and sequence modeling. Sec-
tion 3 describes the proposed memory-bounded
left-corner parsing grammar induction model.
Section 4 describes experiments showing compet-
itive performance of this proposed model to exist-
ing grammar induction models which are not sim-
ilarly constrained. Section 5 provides a summary
and conclusion.

2 Background and Related Work

This work is primarily related to three differ-
ent strains in the computational linguistics and
machine learning literature – grammar induction,
Bayesian part-of-speech tag induction, and se-
quence models for syntactic parsing. We will
briefly cover the most relevant work from each
area.

Grammar induction models learn the syntactic
structure of a language from a sample of unla-
beled text, rather than a gold-standard treebank.
The constituent context model (Klein and Man-
ning, 2002) uses expectation-maximization (EM)

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

to learn differences between observed and unob-
served bracketings, and the dependency model
with valence (Klein and Manning, 2004) uses EM
to learn distributions that generate child dependen-
cies, conditioned on valence (left or right direc-
tion) in addition to the lexical head. One approach
that shares the sequential nature of our work uses
cascaded hidden Markov models (HMMs) (Pon-
vert et al., 2011), building up structure by repeated
applications of the HMM to previously discov-
ered chunks. However, the above models oper-
ate over a standard Treebank-style syntactic space
and therefore do not take advantage of cognitively-
motivated depth limitations that can be introduced
by using a left-corner parsing strategy.

Bayesian models have been widely used in part-
of-speech (POS) tag induction for their ability
to flexibly adapt to data size and complexity as
well as their ability to inject domain knowledge
through the use of priors. The POS tag induc-
tion task is relevant to our work because it also
is done in the context of sequence models, typi-
cally variants of HMMs. Johnson (2007) found
that Bayesian inference for POS tag induction can
improve over EM, especially for small amounts
of data where the priors are important. Non-
parametric Bayesian models, specifically the infi-
nite HMM, have also been applied to POS induc-
tion (van Gael et al., 2009). Van Gael et al. (2009)
takes advantage of efficient inferencing algorithms
for sequences (van Gael et al., 2008), which our
work also uses and extends.

Finally, this work builds on sequential gen-
erative models for parsing, specifically a cogni-
tively motivated hierarchical sequence model (van
Schijndel et al., 2013). This method trans-
forms a grammar into a set of operations over
a hierarchical hidden Markov model; Schuler et
al. (2010) demonstrate that a fixed four-level hier-
archy can parse nearly all human-generated sen-
tences. While this model has been applied to pars-
ing with state of the art results (van Schijndel et
al., 2013), it has thus far only been used in a su-
pervised setting.

3 Model

We use a generative sequence model representing
syntactic structures inspired by left-corner pars-
ing (Aho and Ullman, 1972) and hierarchical hid-
den Markov model (HHMM) parsing (Schuler et
al., 2010). Our core innovation is the adaptation

of this model to unsupervised induction using con-
strained priors.

A left-corner parser maintains a sequence of in-
complete categories a/b, a′/b′, . . . , each consist-
ing of an active category a lacking an awaited cat-
egory b yet to come (van Schijndel et al., 2013).
These incomplete categories can be assembled
into any possible tree structure for a given se-
quence of words using four operations: ‘fork,’ ‘no
fork,’ ‘join,’ and ‘no join,’ as defined by the fol-
lowing natural deduction rules. Fork (+F) and no-
fork (–F) operations deduce a complete category c
from observed word w or from a/b and w, respec-
tively:

a/b w

a/b c
b

+→ c ... ; c→ w (+F)

a/b w

c
a = c; b→ w (–F)

where b +→ c ... constrains c to be a leftmost de-
scendant of b at some depth. Join (+J) and no-
join (–J) operations deduce an incomplete cate-
gory a/b′ or a′/b′ from a/b and c, or just from
c, respectively:

a/b c

a/b′
b→ c b′ (+J)

a/b c

a/b a′/b′
b

+→ a′ ... ; a′ → c b′ (–J)

Human-like memory constraints may then be
defined on the number of such incomplete cate-
gories that can be maintained and the length of
time they can be kept. By limiting the model to
a single level of recursive depth (as opposed to
the four levels in supervised HHMM parsers), we
greatly improve inference speeds, while still al-
lowing for learning and parsing of most of the sen-
tences with less than ten tokens in the Wall Street
Journal section of the Penn Treebank, a standard
grammar induction task. The syntax of each to-
ken is represented with three grammatical random
variables; an Active category A, representing the
constituent type currently being built; an Awaited
category B, representing the constituent type re-
quired to complete the active category; and a part
of speech (POS) tag P . The model also makes use
of two binary switching variables, F (for Fork) and
J (for Join) that guide the transitions of the other
states. These two binary switching variables yield
four cases: +/+, +/−, −/+ and −/−, but in the

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

depth-one model only two of these are used within
sentences: +/+ (fork and join) and −/− (no fork
and no join).

In the +/+ case, the active category remains the
same (at = at−1) and the awaited category merges
with the POS tag to create a new awaited category.
An example of this case is where the state at t−1 is
VP/NP (verb phrase awaiting a noun phrase) and
pt−1 is a determiner (DT); in this case the NP is
likely not complete, and so we need a fork oper-
ation to generate the next item, and an immediate
join operation to indicate that the next element can
be reduced immediately (i.e., the system does not
need to store an extra element).

In the−/− (no fork and no join) case, the previ-
ous active category (at−1) is reduced (completed),
but a new active category (at) is generated to con-
tinue the sentence. An example of this case is after
encountering the subject, where the state at t − 1
is NP/NN (noun phrase missing a common noun)
and pt−1 is a common noun; no new element is
needed to complete the active constituent. Given
no fork, join must not occur, unless the sentence is
ready to terminate.

The other two cases (+/− and −/+), which
add and remove memory elements, are used deter-
ministically at sentence start and end, respectively,
and are therefore not learned.

It is important to note that this constrained pro-
cess still allows more parses than purely left-
branching trees (using only −/− operations) and
purely right-branching trees (using only +/+ op-
erations) because it can switch between these two
options within the same sentence as long as this
does not lead to center embedding (+/− opera-
tions followed by −/+ operations).

We follow the approach of van Gael et al.
(2009) and apply nonparametric priors over the ac-
tive, awaited, and part-of-speech variables. This
approach allows us to learn not only the pa-
rameters of the model—such as what parts of
speech are likely to be created from what awaited
categories—but also the cardinality of how many
active, awaited, and part of speech categories are
present in a fully unsupervised fashion. No labels
are needed for inference, which alternates between
inferring these unseen categories and the associ-
ated model parameters.

3.1 Parser Model Definition
Let F represent the fork variable, J the join vari-
able, A the active variable,B the awaited variable,
P the POS tag variable, and W the observed word
token. Let the state st be the collection of the hid-
den active, awaited, part of speech, fork, and join
variables {ft, jt, at, bt, pt} at position t in the se-
quence. The joint probability of the hidden state st
and observed word wt, given their previous con-
text, are defined using Markov independence as-
sumptions and the fork-join variable decomposi-
tion of van Schijndel et al. (2013), which preserves
PCFG probabilities in incremental sentence pro-
cessing:

P(st, wt|st−11 , w
t−1
1)

def
= P(st, wt|st−1)
def
= P(st|st−1) · P(wt|st)
def
= P(ft, jt, at, bt, pt|st−1) · P(wt|st)
= PF (ft|st−1) ·

PJ(jt|ft, st−1) ·

PA(at|ft, jt, st−1) ·

PB(bt|ft, jt, at, st−1) ·

PP (pt|ft, jt, at, bt, st−1) ·

PW (wt|st) (1)

We now describe the models for each of the dis-
tributions PF , PJ , PA, PB , PP , and PW . In the
depth-one model, we only need to consider situa-
tions in which the fork/join variables take values
+/+ or −/−. The dependencies for these two
cases are shown in a graphical model in Figure 1.

First the fork model PF is assumed to be inde-
pendent of previous state st−1 variables except for
the previous awaited category bt−1 and POS tag
pt−1:

PF (ft|st−1)
def
= PF ′(ft|bt−1, pt−1) (2)

This models whether the POS tag pt−1 just seen
can end the awaited variable bt−1 (ft=−) or
whether it will require another fork (ft=+).

Then the join model PJ is decomposed into
PJF+ and PJF− depending on the outcomes of the
F variable:

PJ(jt|ft, st−1)
def
=

{
PJF+(jt|bt−1, pt−1), if ft=+

PJF−(jt|at−1), if ft=−
(3)

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

adt−1

pt−1

bdt−1

wt−1

ft jt

adt

pt

bdt

wt

Figure 1: Two time steps of the HHMM model. st=All hidden variables at time t, a = Active category, b
= Awaited category, f = Fork node, j=Join node, p = Part of speech tag, w = word. Dashed lines indicate
+/+ dependencies, dotted lines indicate -/- dependencies. Outward links from f and j omitted for clarity.

When ft=+, that is, a fork has been created, the
decision of j is whether to transition the awaited
category (j=+) or create a new stack level (j=−).
When ft=−, that is, the fork has not been cre-
ated, the decision of j is whether to reduce a stack
level (jt=+) or to transition both the active and
awaited categories (jt=−). In a depth-one learner,
both cases are deterministic given ft since we will
know whether we are at the first or last word in the
sentence.

The active model PA is decomposed into
PAF−J− and PAF+J− depending on both the pre-
vious state st−1 and the current fork and join vari-
ables ft and jt:1

PA(at|ft, jt, st−1)
def
=

Jat = at−1K, if ft=+, jt=+

PAF−J−(at|at−1), if ft=−, jt=−
PAF+J−(at|at−1, pt−1), if ft=+, jt=−

(4)

With a +/+ transition, the active variable is not
allowed to change (first case). For example, if
the previous syntactic state is S/VP, and a transi-
tive verb POS tag is hypothesized, the active vari-
able will remain the same (S) as the VP is not
yet able to completely reduce without seeing its
object argument. When there is no fork and no
reduce (−/−), a new active variable is selected
with the AF−J− model. For example, when an
NP/NN generates a noun POS, which can end the
NP (−/−), the next time step might be an S/VP
(having completed a sentence-starting noun phrase

1Here JφK is an indicator function, equal to one when φ is
true and zero otherwise.

the state is with some probability a sentence lack-
ing only a verb phrase). In the fork/no join case
(+/−), at the start of the sentence, we create a
new active variable with the AF+J− model. In the
depth one version of the model the dependency on
the at−1 is unnecessary and in fact the only depen-
dency is the POS tag of the first word (pt−1).

The awaited model PB depends on the outcome
of the join variable jt:

PB(bt|ft, jt, at, st−1)
def
={

PBJ+(bt|bt−1, pt−1), jt=+

PBJ−(bt|at−1, at) jt=−
(5)

The BJ+ model is used when a join occurs (usu-
ally +/+), meaning that the active variable has
not changed. To continue the example from above,
if the previous state is S/VP and a transitive verb
POS is hypothesized, the VP +/+ transition will
occur, and the BJ+ model will merge the VP and
transitive verb to create a new state of S/NP (a sen-
tence lacking an object noun phrase).

The BJ− model is used when a new awaited
variable must be generated from the new active
value. For example, if the previous state was
NP/NN and a noun is encountered, it can complete
the noun phrase, but the −/− transition followed
by the AF+J− model application generates an ac-
tive value of S. In this case, the BJ− model gen-
erates likely completions of a sentence given the
current active value S and the recently completed
active constituent NP.

The part-of-speech pt only depends on the

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

awaited (bt) category at the same time step:

PP (pt|ft, jt, at, bt, st−1)
def
= PP ′(pt|bt) (6)

Finally, the lexical item (wt) only depends on
the part of speech tag (pt) at the same time step:

PW (wt|st) = PW ′(wt|pt) (7)

3.2 Model priors
To define priors over the syntactic models we build
on the infinite hidden Markov model (iHMM)
used for part of speech tagging (van Gael et al.,
2009). In that model, a hierarchical Dirichlet pro-
cess HMM (Teh et al., 2006) is used to allow
the observed number of states—corresponding to
parts of speech—in the HMM to grow as the data
requires. The hierarchical structure of the iHMM
ensures that transition distributions share the same
set of states, which would not be possible if we
used a flat infinite mixture model.

In our model, we use nonparametric priors on
each of the active, awaited, and part-of-speech
variables, allowing the cardinality of each of these
variables to grow as the data requires. In each
case, we first draw a base distribution from a root
Dirichlet process; we then use that base distribu-
tion as a parameter to an infinite set of Dirichlet
processes, one each for each applicable combina-
tion of the conditioning variables at−1, bt−1, pt−1,
jt, ft, at, and bt:

βA ∼ GEM(γA)

PAF−J−(at|at−1) ∼ DP (αA, βA)

PAF+J−(at|at−1, pt−1) ∼ DP (αA, βA)

βB ∼ GEM(γB)

PBJ+(bt|bt−1, pt−1) ∼ DP (αB, βB)

PBJ−(bt|at−1, at) ∼ DP (αB, βB)

βP ∼ GEM(γP)

PP ′(pt|bt) ∼ DP (αP , βP)

Where DP is Dirichlet process and GEM is the
stick-breaking construction for DPs (Sethuraman,
1994).

3.3 Inference
We base our inference process on the beam sam-
pling approach employed in van Gael et al. (2009)

for part-of-speech induction. This inference ap-
proach alternates between two phases in each it-
eration. First, given the distributions PF , PJ , PA,
PB , PP , and PW , we resample values for all the
hidden states {st}. Next, given the state values
{st}, we resample each set of multinomial distri-
butions PF , PJ , PA, PB , PP , and PW .

We initialize the sampler by conservatively set-
ting the cardinalities of the number of active,
awaited, and part-of-speech states we expect to
see in the data set, randomly initializing the state
space, and then sampling the parameters for each
distribution PF , PJ , PA, PB , PP , and PW given
the randomly initialized states and fixed hyperpa-
rameters (specified in Section 4).

As noted by van Gael et al. (2008), token-level
Gibbs sampling in a sequence model can be slow
to mix. In our preliminary work, we found that
mixing with token-level Gibbs sampling is even
slower in our model due to the tight constraints
imposed by the switching variables—it is tech-
nically ergodic but exploring the state space re-
quires many low probability moves. Therefore,
we use sentence-level sampling instead of token-
level sampling, first computing forward probabili-
ties for the sequence and then doing sampling in a
backwards pass; resampling the parameters for the
probability distributions only requires computing
the counts from the sampled sequence and com-
bining with the hyperparameters. To account for
the infinite size of the state spaces, we employ the
beam sampler (van Gael et al., 2008), with some
modifications for computational speed.

The standard beam sampler introduces an aux-
iliary variable u at each time step, which acts as
a threshold below which transition probabilities
are ignored. This auxiliary variable u is drawn
from Uniform(0, p(st|st−1)), so it will be between
0 and the probability of the previously sampled
transition. The joint distribution over transitions,
emissions, and auxiliary variables can be reduced
so that the transition matrix is transformed into a
boolean matrix with a 1 indicating an allowed tran-
sition. Depending on the cut-off value u, the size
of the instantiated transition matrix will be differ-
ent for every time-step.

In our model, we must sample values of u for
active, awaited, and POS variables at every time
step, rather than a single u for the transition ma-
trix. It is possible to compile all the operations at
each time step into a single large transition matrix,

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

but computing this matrix is prohibitively slow for
an operation that must be done at each time step in
the data.

To address this issue, we interleave several it-
erations holding the cardinality of the instanti-
ated space fixed and with full beam-sampling steps
in which the cardinality of the state space can
change. When the cardinality of the state space is
fixed, we can multiply out the states into one large,
structured transition matrix that is valid for all time
steps. Our forward pass is thus reduced to an
HMM forward pass (albeit one over a much larger
set of states), vastly improving the speed of infer-
ence. Alternating between sampling the parame-
ters of this matrix and the state values themselves
corresponds to updating a finite portion of the in-
finite possible state space; by interleaving these fi-
nite steps with occasional full beam-sampling iter-
ations, we are still properly exploring the posterior
over models.

3.4 Parsing

There are multiple ways to extract parses from an
unsupervised grammar induction system such as
this. The optimal Bayesian approach would in-
volve averaging over the values sampled for each
model across many iterations, and then use those
models in a Viterbi decoding parser to find the best
parse for each sentence. Alternatively, if the model
parameters have ceased to change much between
iterations, we can assume that we have found a
local optimum. We can then use a single sample
from the end of the run as our model and the anal-
yses of each sentence in that run as the parses to
be evaluated.

4 Evaluation

Following Klein (2005), Seginer (2007) and Pon-
vert et al. (2011), we evaluate our induced gram-
mars on standard induction tasks in three lan-
guages; the WSJ-10 unlabeled bracketing task
(English), the NEGRA-10 task (German), and
the CTB-10 task (Mandarin). These tasks ex-
amine the extent to which a parser run using an
induced grammar correctly identifies constituent
spans (disregarding span labels) in the subset of
Wall Street Journal Penn Treebank (Marcus et al.,
1994), NEGRA Treebank (Skut et al., 1997), and
Chinese Treebank (Xia et al., 2000) sentences con-
taining no more than ten words. In order to ap-
proximate human-like language learning, follow-

ing Klein and others, we evaluate on text with-
out punctuation and without part-of-speech anno-
tations.

We also observe that many grammar induction
models (in particluar, Seginer and Ponvert et al,
mentioned above) exceed a right branching base-
line only on the basis of precision, essentially
only by predicting annotators’ decisions not to
include certain binary projections as corpus an-
notations. Since we feel these annotator deci-
sions were primarily driven by considerations of
annotation speed and are of questionable linguis-
tic value for downstream applications, and since
a purely binary-branching tree structure with no
unary branches naturally constrains precision to be
no higher than recall, we focus our evaluation ex-
clusively on recall.

We train our unsupervised hierarchical hidden
Markov model (UHHMM) on the 7422 unlabeled
sentences of WSJ-10, 7536 sentences of NEGRA-
10 and 4624 sentences of CTB-10. We ran the
model on these corpora for 4000 iterations with
10 nodes with Intel Xeon x5650 CPUs, 120 cores
in total. Each training process took 4 days to com-
plete.

We conservatively initialize the number of ac-
tive categories |A| = 10, the number of awaited
categories |B| = 10, and the number of POS cate-
gories |P | = 15. The values for αA, αB , and αP

were each set to 0.5, while the values for αF and
αJ were each set to 0.1. The value of γ was set to
0.75.

4.1 Model Performance and Convergence

During training we used the joint log likelihood
over the entire model as the metric to test for con-
vergence. Figure 2 shows the fluctuation of the
log probabilities for the WSJ-10 dataset, averaged
over a window of 100 iterations. The log proba-
bilities converge at around 2000 iterations.

The recall curve in Figure 3 shows how recall
of UHHMM on gold WSJ-10 brackets changes
through iterations. For comparison with other
models, we compute recall using the model at it-
eration 3610, which scored closest to peak in av-
eraged log probability after the log probability ap-
peared to converge. Like the log probability plot,
the recall curve also steadily improves over several
iterations and converges at about the same place.
Having established this method on English, we
similarly tested for convergence on NEGRA and

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

Number of Iterations
0 500 1000 1500 2000 2500 3000 3500 4000

L
o

g
 p

ro
b

a
b

ili
ti
e

s
×10

5

-1.68

-1.66

-1.64

-1.62

-1.6

-1.58

-1.56

-1.54

-1.52

-1.5

Figure 2: Log probabilities of the WSJ-10 dataset
from UHHMM at each iteration, averaged over a
window of 100 iterations.

Number of Iterations

0 1000 2000 3000 4000

R
e

c
a

ll

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 3: Recall curve of UHHMM on WSJ-10.

CTB by evaluating parser performance at the same
iteration at which peak log probability occurred.

4.2 Baseline approaches

While much of the work on grammar induction
uses gold POS tags as the basic units in the se-
quences to induce grammar, the technique pro-
posed in this work induces syntactic structures di-
rectly from raw text. We compare our proposed
approach with four existing grammar induction
techniques that also operate directly on the raw
text, as well as two more competitive baselines
make use of a priori POS tags. We report results on
three datasets in three different languages: Penn
Treebank for English, NEGRA for German and
Chinese Treebank for Chinese.

We compare against four existing techniques

WSJ-10 Training Unlabeled Unlabeled
Model set size precision recall

HMM 45.4k 64.4 64.7
CCL No Punc 49.2k 68.7 65.5
PRLG 45.4k 74.6 66.7
Right-branching - 55.2 70.0
UHHMM (this work) 7.4k 56.2 71.0

CCM (Induced) 7.4k 56.8 71.1
DMV+CCM (DISTR.) 7.4k 65.2 82.8

Table 1: Unlabeled bracketing evaluation results
of different unsupervised algorithms for the WSJ-
10 dataset. The results of CCM and DMV+CCM
are italicized as a reminder that they each use in-
duced POS tags instead of raw text for grammar
induction. Our model (UHHMM) has the highest
recall of all the models that trained only on raw
text, some of which use substantially larger train-
ing sets.

that similarly train on raw text, but which use
more training data than our system uses. The com-
mon cover link (CCL No Punc) model of Seginer
(2007) was trained on the entire WSJ Penn Tree-
bank (with punctuation removed), NEGRA cor-
pus and Chinese Treebank respectively, including
those sentences with more than ten words. The
probabilistic right linear grammar model (PRLG)
and hidden Markov model (HMM) of Ponvert et
al. (2011) were trained on WSJ sections 00-22,
first 18602 sentences of NEGRA which is almost
90% of the whole corpus and 85% of CTB respec-
tively, but with punctuation retained. The right-
branching model is a deterministic baseline where
all sentences in all three corpora are bracketed as
if they were all purely right-branching.

For completeness, we also compare against two
more competitive baselines that do make use of a
priori POS tags. CCM is the chart-based grammar
induction model from Klein and Manning (2002),
trained and tested on the WSJ-10 with induced
POS tags. DMV+CCM (DISTR.) is a model pro-
posed by Klein and Manning (2004) and Klein
(2005), where a joint model of the constituent con-
text model and the dependency model with va-
lence is used to train and induce structures, also
using WSJ-10 and NEGRA-10 sentences with au-
tomatically induced POS tags.

4.3 Results

In Table 1, we report unlabeled bracketing recall
on the WSJ-10 dataset. The results for German

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

NEGRA-10 Unlabeled Unlabeled
Model precision recall

HMM 47.7 72.0
CCL No Punc 39.8 61.2
PRLG 56.3 72.1
Right-branching 33.9 60.1
UHHMM (this work) 41.8 72.4

DMV+CCM (DISTR.) 49.6 89.7

Table 2: Unlabeled bracketing evaluation re-
sults of different unsupervised algorithms for the
NEGRA-10 dataset. The results of DMV+CCM
are italicized as a reminder that they each use in-
duced POS tags. Our model (UHHMM) has the
highest recall of all the models that trained only
on raw text, all of which use the whole or a large
part of the NEGRA corpus as the training set.

CTB-10 Unlabeled Unlabeled
Model precision recall

HMM 55.8 53.1
CCL No Punc 48.5 47.8
PRLG 62.7 56.9
Right-branching 43.3 60.4
UHHMM (this work) 24.2 33.0

Table 3: Unlabeled bracketing evaluation results
of different unsupervised algorithms for the CTB-
10 dataset.

and Chinese are in Table 2 and Table 3. We ob-
serve state-of-the-art recall performance by our
system on English and German compared with
other recent induction systems which also do not
require a priori POS tags, some of which are
trained on substantially larger training sets. For
English and German we also observe higher recall
results by our system than the pure right-branching
baseline, indicating that our system is not simply
relying on sequences of +/+ operations. For Chi-
nese, our system performs worse than the compa-
rable systems and the right-branching baseline.

4.4 Analysis

The UHHMM did well on both the WSJ-10 and
NEGRA-10 datasets, correctly learning mostly
right-branching structures with no supervision,
and obtaining the highest recall among com-
parable systems and the right-branching base-
lines. However, the UHHMM performed sur-
prising poorly on the CTB-10 dataset. This
poor performance on CTB-10 may be attributable
to the relative lack of common function words

in Chinese. Inspection of the UHHMM model
output on English and German indicates that it
quickly assigns characteristic part-of-speech cate-
gories to function words like determiners and cop-
ulas, which then presumably constrain the remain-
ing categories. With no such function words in
Chinese, and a relatively small training set size,
the model may be facing severe sparse data prob-
lems. We therefore anticipate that a larger train-
ing set would substantially boost performance on
highly analytical languages like Chinese.

Another source of error in all three datasets is
that our model is constrained to posit tree struc-
tures that require no more than a single level of
left-corner recursive depth (recall §3). By exam-
ining the WSJ-10 data set, we observe that all but
26 sentences in this 7422 sentence corpus com-
ply with this depth restriction. In order to be di-
rectly comparable to previous results, we evaluate
on the full WSJ-10 data set, even though our sys-
tem is guaranteed to mislabel portions of these 26
more deeply recursive sentences. The NEGRA-10
and CTB-10 datasets are similarly predominantly
depth-one.

Future work will look to extend the model de-
scribed here to greater depths by using the learned
models we have described here as priors to dis-
tributions at greater depths. The results we have
obtained with a depth one system on shorter sen-
tences are good evidence that the problem is learn-
able in this model, and we are therefore encour-
aged that this approach will be likely to succeed.

5 Conclusion

This paper has presented a grammar induction
model based on a highly constrained version of
a memory-bounded left-corner parsing strategy,
which is able to achieve parsing performance for
an induced grammar that is comparable to exist-
ing models that are not similarly cognitively con-
strained. The fact that an induction model can
achieve competitive results on an existing gram-
mar induction task despite very restrictive memory
constraints is reassuring and suggests that these
kinds of memory constraints may be exploited in
human language acquisition.

The system and instructions for replicating our
evaluation setup are available on github.2

2http://anonymous.url

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

References
Steven P. Abney and Mark Johnson. 1991. Mem-

ory requirements and local ambiguities of parsing
strategies. Journal of Psycholinguistic Research,
20(3):233–250.

Alfred V Aho and Jeffery D Ullman. 1972. The Theory
of Parsing, Translation and Compiling; Volume. I:
Parsing. Prentice-Hall.

Noam Chomsky and George A Miller. 1963. Introduc-
tion to the formal analysis of natural languages. In
Handbook of Mathematical Psychology, pages 269–
321. Wiley.

Edward Gibson. 1991. A computational theory of hu-
man linguistic processing: Memory limitations and
processing breakdown. Ph.D. thesis.

James Henderson. 2004. Lookahead in determinis-
tic left-corner parsing. In Proceedings of the work-
shop on incremental parsing: Bringing engineering
and cognition together, pages 26–33. Association
for Computational Linguistics.

Philip N Johnson-Laird. 1983. Mental models: to-
wards a cognitive science of language, inference,
and consciousness. Harvard University Press.

Mark Johnson. 2007. Why doesn’t EM find good
HMM POS-taggers. Proceedings of the 2007 Joint
Conference on , (June):296–305.

Fred Karlsson. 2007. Constraints on multiple center-
embedding of clauses. Journal of Linguistics,
43:365–392.

Dan Klein and Christopher D Manning. 2002. A
generative constituent-context model for improved
grammar induction. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Compu-
tational Linguistics.

Dan Klein. 2005. The unsupervised learning of natu-
ral language structure. Ph.D. thesis, Stanford Uni-
versity.

Richard L Lewis and Shravan Vasishth. 2005.
An activation-based model of sentence processing
as skilled memory retrieval. Cognitive Science,
29(3):375–419.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyreand Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn TreeBank: Annotating predicate
argument structure. In Proceedings of the ARPA
Human Language Technology Workshop.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics, (1999):1077–1086.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage incremen-
tal parsing using human-like memory constraints.
Computational Linguistics, 36(1):1–30.

Yoav Seginer. 2007. Learning Syntactic Structure.
Ph.D. thesis, University of Amsterdam.

Jayaram Sethuraman. 1994. A constructive definition
of dirichlet priors. Statistica Sinica, 4:639–650.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Proceedings of the
Fifth Conference on Applied Natural Language Pro-
cessing {ANLP}-97.

Y W Teh, M I Jordan, M J Beal, and D M Blei. 2006.
Hierarchical Dirichlet processes. Journal of the
American Statistical Association, 101(476):1566–
1581.

Jurgen van Gael, Yunus Saatci, Yee Whye Teh, and
Zoubin Ghahramani. 2008. Beam sampling for the
infinite hidden Markov model. pages 1–8.

Jurgen van Gael, Andreas Vlachos, and Zoubin
Ghahramani. 2009. The infinite HMM for unsu-
pervised PoS tagging. (August):678–687.

Marten van Schijndel, Andy Exley, and William
Schuler. 2013. A model of language processing as
hierarchic sequential prediction. Topics in Cognitive
Science, 5(3):522–540.

F Xia, M Palmer, N Xue, and ME Okurowski. 2000.
Developing Guidelines and Ensuring Consistency
for Chinese Text Annotation. LREC.

