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Abstract

This paper describes an application of a
depth-bounded left-corner parsing strategy
to a grammar induction task. The pro-
posed model is severely constrained to a
single memory element, allowing no cen-
ter embedding but unlimited left and right
embedding, which may resemble mem-
ory constraints of early language learners.
Despite this severe constraint, the model
described in this paper still manages to
perform competitively with unconstrained
models on an existing task of acquiring
grammar from short (ten-word or fewer)
sentences.

1 Introduction

Grammar induction is often approached using
chart parsing techniques (Klein and Manning,
2002), which allow any pair of adjacent spans to
be hypothesized as a constituent. As a result, trees
with any amount of center-embedding recursion
can be induced by these models. However, cen-
ter embedding is known to be difficult for human
sentence processing (Chomsky and Miller, 1963;
Karlsson, 2007), leading to famously difficult sen-
tences like ‘[NP The cart [NP the horse [NP the
man] bought] pulled] broke.’ Sentence process-
ing models proposed in the cognitive modeling
community therefore often use variants of a left-
corner parsing strategy (Aho and Ullman, 1972;
Johnson-Laird, 1983; Abney and Johnson, 1991;
Gibson, 1991; Henderson, 2004; Lewis and Va-
sishth, 2005; Schuler et al., 2010), which iso-
late and apply memory constraints to such embed-
dings.

This paper describes an application of a depth-
bounded left-corner parsing strategy to a grammar
induction task. The proposed model is severely

constrained to a single memory element, allowing
no center embedding but unlimited left and right
embedding. This severe constraint may resem-
ble memory constraints of early language learn-
ers. This constrained model may also function
as a base case for a more complex model, able
to hypothesize multiple center embeddings using
hierarchical priors which depend on the learnabil-
ity of a depth-one model as a necessary precondi-
tion. Despite the severe constraint of only a single
depth level in processing, the model described in
this paper still manages to perform competitively
with unconstrained models on an existing task of
acquiring grammar from short (ten-word or fewer)
sentences.

The remainder of this paper is organized as fol-
lows. Section 2 describes some related work on
grammar induction and sequence modeling. Sec-
tion 3 describes the proposed memory-bounded
left-corner parsing grammar induction model.
Section 4 describes experiments showing compet-
itive performance of this proposed model to exist-
ing grammar induction models which are not sim-
ilarly constrained. Section 5 provides a summary
and conclusion.

2 Background and Related Work

This work is primarily related to three differ-
ent strains in the computational linguistics and
machine learning literature – grammar induction,
Bayesian part-of-speech tag induction, and se-
quence models for syntactic parsing. We will
briefly cover the most relevant work from each
area.

Grammar induction models learn the syntactic
structure of a language from a sample of unla-
beled text, rather than a gold-standard treebank.
The constituent context model (Klein and Man-
ning, 2002) uses expectation-maximization (EM)



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2016 Submission 154. Confidential review copy. DO NOT DISTRIBUTE.

to learn differences between observed and unob-
served bracketings, and the dependency model
with valence (Klein and Manning, 2004) uses EM
to learn distributions that generate child dependen-
cies, conditioned on valence (left or right direc-
tion) in addition to the lexical head. One approach
that shares the sequential nature of our work uses
cascaded hidden Markov models (HMMs) (Pon-
vert et al., 2011), building up structure by repeated
applications of the HMM to previously discov-
ered chunks. However, the above models oper-
ate over a standard Treebank-style syntactic space
and therefore do not take advantage of cognitively-
motivated depth limitations that can be introduced
by using a left-corner parsing strategy.

Bayesian models have been widely used in part-
of-speech (POS) tag induction for their ability
to flexibly adapt to data size and complexity as
well as their ability to inject domain knowledge
through the use of priors. The POS tag induc-
tion task is relevant to our work because it also
is done in the context of sequence models, typi-
cally variants of HMMs. Johnson (2007) found
that Bayesian inference for POS tag induction can
improve over EM, especially for small amounts
of data where the priors are important. Non-
parametric Bayesian models, specifically the infi-
nite HMM, have also been applied to POS induc-
tion (van Gael et al., 2009). Van Gael et al. (2009)
takes advantage of efficient inferencing algorithms
for sequences (van Gael et al., 2008), which our
work also uses and extends.

Finally, this work builds on sequential gen-
erative models for parsing, specifically a cogni-
tively motivated hierarchical sequence model (van
Schijndel et al., 2013). This method trans-
forms a grammar into a set of operations over
a hierarchical hidden Markov model; Schuler et
al. (2010) demonstrate that a fixed four-level hier-
archy can parse nearly all human-generated sen-
tences. While this model has been applied to pars-
ing with state of the art results (van Schijndel et
al., 2013), it has thus far only been used in a su-
pervised setting.

3 Model

We use a generative sequence model representing
syntactic structures inspired by left-corner pars-
ing (Aho and Ullman, 1972) and hierarchical hid-
den Markov model (HHMM) parsing (Schuler et
al., 2010). Our core innovation is the adaptation

of this model to unsupervised induction using con-
strained priors.

A left-corner parser maintains a sequence of in-
complete categories a/b, a′/b′, . . . , each consist-
ing of an active category a lacking an awaited cat-
egory b yet to come (van Schijndel et al., 2013).
These incomplete categories can be assembled
into any possible tree structure for a given se-
quence of words using four operations: ‘fork,’ ‘no
fork,’ ‘join,’ and ‘no join,’ as defined by the fol-
lowing natural deduction rules. Fork (+F) and no-
fork (–F) operations deduce a complete category c
from observed word w or from a/b and w, respec-
tively:

a/b w

a/b c
b

+→ c ... ; c→ w (+F)

a/b w

c
a = c; b→ w (–F)

where b +→ c ... constrains c to be a leftmost de-
scendant of b at some depth. Join (+J) and no-
join (–J) operations deduce an incomplete cate-
gory a/b′ or a′/b′ from a/b and c, or just from
c, respectively:

a/b c

a/b′
b→ c b′ (+J)

a/b c

a/b a′/b′
b

+→ a′ ... ; a′ → c b′ (–J)

Human-like memory constraints may then be
defined on the number of such incomplete cate-
gories that can be maintained and the length of
time they can be kept. By limiting the model to
a single level of recursive depth (as opposed to
the four levels in supervised HHMM parsers), we
greatly improve inference speeds, while still al-
lowing for learning and parsing of most of the sen-
tences with less than ten tokens in the Wall Street
Journal section of the Penn Treebank, a standard
grammar induction task. The syntax of each to-
ken is represented with three grammatical random
variables; an Active category A, representing the
constituent type currently being built; an Awaited
category B, representing the constituent type re-
quired to complete the active category; and a part
of speech (POS) tag P . The model also makes use
of two binary switching variables, F (for Fork) and
J (for Join) that guide the transitions of the other
states. These two binary switching variables yield
four cases: +/+, +/−, −/+ and −/−, but in the
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depth-one model only two of these are used within
sentences: +/+ (fork and join) and −/− (no fork
and no join).

In the +/+ case, the active category remains the
same (at = at−1) and the awaited category merges
with the POS tag to create a new awaited category.
An example of this case is where the state at t−1 is
VP/NP (verb phrase awaiting a noun phrase) and
pt−1 is a determiner (DT); in this case the NP is
likely not complete, and so we need a fork oper-
ation to generate the next item, and an immediate
join operation to indicate that the next element can
be reduced immediately (i.e., the system does not
need to store an extra element).

In the−/− (no fork and no join) case, the previ-
ous active category (at−1) is reduced (completed),
but a new active category (at) is generated to con-
tinue the sentence. An example of this case is after
encountering the subject, where the state at t − 1
is NP/NN (noun phrase missing a common noun)
and pt−1 is a common noun; no new element is
needed to complete the active constituent. Given
no fork, join must not occur, unless the sentence is
ready to terminate.

The other two cases (+/− and −/+), which
add and remove memory elements, are used deter-
ministically at sentence start and end, respectively,
and are therefore not learned.

It is important to note that this constrained pro-
cess still allows more parses than purely left-
branching trees (using only −/− operations) and
purely right-branching trees (using only +/+ op-
erations) because it can switch between these two
options within the same sentence as long as this
does not lead to center embedding (+/− opera-
tions followed by −/+ operations).

We follow the approach of van Gael et al.
(2009) and apply nonparametric priors over the ac-
tive, awaited, and part-of-speech variables. This
approach allows us to learn not only the pa-
rameters of the model—such as what parts of
speech are likely to be created from what awaited
categories—but also the cardinality of how many
active, awaited, and part of speech categories are
present in a fully unsupervised fashion. No labels
are needed for inference, which alternates between
inferring these unseen categories and the associ-
ated model parameters.

3.1 Parser Model Definition
Let F represent the fork variable, J the join vari-
able, A the active variable,B the awaited variable,
P the POS tag variable, and W the observed word
token. Let the state st be the collection of the hid-
den active, awaited, part of speech, fork, and join
variables {ft, jt, at, bt, pt} at position t in the se-
quence. The joint probability of the hidden state st
and observed word wt, given their previous con-
text, are defined using Markov independence as-
sumptions and the fork-join variable decomposi-
tion of van Schijndel et al. (2013), which preserves
PCFG probabilities in incremental sentence pro-
cessing:

P(st, wt|st−11 , w
t−1
1 )

def
= P(st, wt|st−1)
def
= P(st|st−1) · P(wt|st)
def
= P(ft, jt, at, bt, pt|st−1) · P(wt|st)
= PF (ft|st−1) ·

PJ(jt|ft, st−1) ·

PA(at|ft, jt, st−1) ·

PB(bt|ft, jt, at, st−1) ·

PP (pt|ft, jt, at, bt, st−1) ·

PW (wt|st) (1)

We now describe the models for each of the dis-
tributions PF , PJ , PA, PB , PP , and PW . In the
depth-one model, we only need to consider situa-
tions in which the fork/join variables take values
+/+ or −/−. The dependencies for these two
cases are shown in a graphical model in Figure 1.

First the fork model PF is assumed to be inde-
pendent of previous state st−1 variables except for
the previous awaited category bt−1 and POS tag
pt−1:

PF (ft|st−1)
def
= PF ′(ft|bt−1, pt−1) (2)

This models whether the POS tag pt−1 just seen
can end the awaited variable bt−1 (ft=−) or
whether it will require another fork (ft=+).

Then the join model PJ is decomposed into
PJF+ and PJF− depending on the outcomes of the
F variable:

PJ(jt|ft, st−1)
def
=

{
PJF+(jt|bt−1, pt−1), if ft=+

PJF−(jt|at−1), if ft=−
(3)
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adt−1

pt−1

bdt−1

wt−1

ft jt

adt

pt

bdt

wt

Figure 1: Two time steps of the HHMM model. st=All hidden variables at time t, a = Active category, b
= Awaited category, f = Fork node, j=Join node, p = Part of speech tag, w = word. Dashed lines indicate
+/+ dependencies, dotted lines indicate -/- dependencies. Outward links from f and j omitted for clarity.

When ft=+, that is, a fork has been created, the
decision of j is whether to transition the awaited
category (j=+) or create a new stack level (j=−).
When ft=−, that is, the fork has not been cre-
ated, the decision of j is whether to reduce a stack
level (jt=+) or to transition both the active and
awaited categories (jt=−). In a depth-one learner,
both cases are deterministic given ft since we will
know whether we are at the first or last word in the
sentence.

The active model PA is decomposed into
PAF−J− and PAF+J− depending on both the pre-
vious state st−1 and the current fork and join vari-
ables ft and jt:1

PA(at|ft, jt, st−1)
def
=

Jat = at−1K, if ft=+, jt=+

PAF−J−(at|at−1), if ft=−, jt=−
PAF+J−(at|at−1, pt−1), if ft=+, jt=−

(4)

With a +/+ transition, the active variable is not
allowed to change (first case). For example, if
the previous syntactic state is S/VP, and a transi-
tive verb POS tag is hypothesized, the active vari-
able will remain the same (S) as the VP is not
yet able to completely reduce without seeing its
object argument. When there is no fork and no
reduce (−/−), a new active variable is selected
with the AF−J− model. For example, when an
NP/NN generates a noun POS, which can end the
NP (−/−), the next time step might be an S/VP
(having completed a sentence-starting noun phrase

1Here JφK is an indicator function, equal to one when φ is
true and zero otherwise.

the state is with some probability a sentence lack-
ing only a verb phrase). In the fork/no join case
(+/−), at the start of the sentence, we create a
new active variable with the AF+J− model. In the
depth one version of the model the dependency on
the at−1 is unnecessary and in fact the only depen-
dency is the POS tag of the first word (pt−1).

The awaited model PB depends on the outcome
of the join variable jt:

PB(bt|ft, jt, at, st−1)
def
={

PBJ+(bt|bt−1, pt−1), jt=+

PBJ−(bt|at−1, at) jt=−
(5)

The BJ+ model is used when a join occurs (usu-
ally +/+), meaning that the active variable has
not changed. To continue the example from above,
if the previous state is S/VP and a transitive verb
POS is hypothesized, the VP +/+ transition will
occur, and the BJ+ model will merge the VP and
transitive verb to create a new state of S/NP (a sen-
tence lacking an object noun phrase).

The BJ− model is used when a new awaited
variable must be generated from the new active
value. For example, if the previous state was
NP/NN and a noun is encountered, it can complete
the noun phrase, but the −/− transition followed
by the AF+J− model application generates an ac-
tive value of S. In this case, the BJ− model gen-
erates likely completions of a sentence given the
current active value S and the recently completed
active constituent NP.

The part-of-speech pt only depends on the
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awaited (bt) category at the same time step:

PP (pt|ft, jt, at, bt, st−1)
def
= PP ′(pt|bt) (6)

Finally, the lexical item (wt) only depends on
the part of speech tag (pt) at the same time step:

PW (wt|st) = PW ′(wt|pt) (7)

3.2 Model priors
To define priors over the syntactic models we build
on the infinite hidden Markov model (iHMM)
used for part of speech tagging (van Gael et al.,
2009). In that model, a hierarchical Dirichlet pro-
cess HMM (Teh et al., 2006) is used to allow
the observed number of states—corresponding to
parts of speech—in the HMM to grow as the data
requires. The hierarchical structure of the iHMM
ensures that transition distributions share the same
set of states, which would not be possible if we
used a flat infinite mixture model.

In our model, we use nonparametric priors on
each of the active, awaited, and part-of-speech
variables, allowing the cardinality of each of these
variables to grow as the data requires. In each
case, we first draw a base distribution from a root
Dirichlet process; we then use that base distribu-
tion as a parameter to an infinite set of Dirichlet
processes, one each for each applicable combina-
tion of the conditioning variables at−1, bt−1, pt−1,
jt, ft, at, and bt:

βA ∼ GEM(γA)

PAF−J−(at|at−1) ∼ DP (αA, βA)

PAF+J−(at|at−1, pt−1) ∼ DP (αA, βA)

βB ∼ GEM(γB)

PBJ+(bt|bt−1, pt−1) ∼ DP (αB, βB)

PBJ−(bt|at−1, at) ∼ DP (αB, βB)

βP ∼ GEM(γP )

PP ′(pt|bt) ∼ DP (αP , βP )

Where DP is Dirichlet process and GEM is the
stick-breaking construction for DPs (Sethuraman,
1994).

3.3 Inference
We base our inference process on the beam sam-
pling approach employed in van Gael et al. (2009)

for part-of-speech induction. This inference ap-
proach alternates between two phases in each it-
eration. First, given the distributions PF , PJ , PA,
PB , PP , and PW , we resample values for all the
hidden states {st}. Next, given the state values
{st}, we resample each set of multinomial distri-
butions PF , PJ , PA, PB , PP , and PW .

We initialize the sampler by conservatively set-
ting the cardinalities of the number of active,
awaited, and part-of-speech states we expect to
see in the data set, randomly initializing the state
space, and then sampling the parameters for each
distribution PF , PJ , PA, PB , PP , and PW given
the randomly initialized states and fixed hyperpa-
rameters (specified in Section 4).

As noted by van Gael et al. (2008), token-level
Gibbs sampling in a sequence model can be slow
to mix. In our preliminary work, we found that
mixing with token-level Gibbs sampling is even
slower in our model due to the tight constraints
imposed by the switching variables—it is tech-
nically ergodic but exploring the state space re-
quires many low probability moves. Therefore,
we use sentence-level sampling instead of token-
level sampling, first computing forward probabili-
ties for the sequence and then doing sampling in a
backwards pass; resampling the parameters for the
probability distributions only requires computing
the counts from the sampled sequence and com-
bining with the hyperparameters. To account for
the infinite size of the state spaces, we employ the
beam sampler (van Gael et al., 2008), with some
modifications for computational speed.

The standard beam sampler introduces an aux-
iliary variable u at each time step, which acts as
a threshold below which transition probabilities
are ignored. This auxiliary variable u is drawn
from Uniform(0, p(st|st−1)), so it will be between
0 and the probability of the previously sampled
transition. The joint distribution over transitions,
emissions, and auxiliary variables can be reduced
so that the transition matrix is transformed into a
boolean matrix with a 1 indicating an allowed tran-
sition. Depending on the cut-off value u, the size
of the instantiated transition matrix will be differ-
ent for every time-step.

In our model, we must sample values of u for
active, awaited, and POS variables at every time
step, rather than a single u for the transition ma-
trix. It is possible to compile all the operations at
each time step into a single large transition matrix,
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but computing this matrix is prohibitively slow for
an operation that must be done at each time step in
the data.

To address this issue, we interleave several it-
erations holding the cardinality of the instanti-
ated space fixed and with full beam-sampling steps
in which the cardinality of the state space can
change. When the cardinality of the state space is
fixed, we can multiply out the states into one large,
structured transition matrix that is valid for all time
steps. Our forward pass is thus reduced to an
HMM forward pass (albeit one over a much larger
set of states), vastly improving the speed of infer-
ence. Alternating between sampling the parame-
ters of this matrix and the state values themselves
corresponds to updating a finite portion of the in-
finite possible state space; by interleaving these fi-
nite steps with occasional full beam-sampling iter-
ations, we are still properly exploring the posterior
over models.

3.4 Parsing

There are multiple ways to extract parses from an
unsupervised grammar induction system such as
this. The optimal Bayesian approach would in-
volve averaging over the values sampled for each
model across many iterations, and then use those
models in a Viterbi decoding parser to find the best
parse for each sentence. Alternatively, if the model
parameters have ceased to change much between
iterations, we can assume that we have found a
local optimum. We can then use a single sample
from the end of the run as our model and the anal-
yses of each sentence in that run as the parses to
be evaluated.

4 Evaluation

Following Klein (2005), Seginer (2007) and Pon-
vert et al. (2011), we evaluate our induced gram-
mars on standard induction tasks in three lan-
guages; the WSJ-10 unlabeled bracketing task
(English), the NEGRA-10 task (German), and
the CTB-10 task (Mandarin). These tasks ex-
amine the extent to which a parser run using an
induced grammar correctly identifies constituent
spans (disregarding span labels) in the subset of
Wall Street Journal Penn Treebank (Marcus et al.,
1994), NEGRA Treebank (Skut et al., 1997), and
Chinese Treebank (Xia et al., 2000) sentences con-
taining no more than ten words. In order to ap-
proximate human-like language learning, follow-

ing Klein and others, we evaluate on text with-
out punctuation and without part-of-speech anno-
tations.

We also observe that many grammar induction
models (in particluar, Seginer and Ponvert et al,
mentioned above) exceed a right branching base-
line only on the basis of precision, essentially
only by predicting annotators’ decisions not to
include certain binary projections as corpus an-
notations. Since we feel these annotator deci-
sions were primarily driven by considerations of
annotation speed and are of questionable linguis-
tic value for downstream applications, and since
a purely binary-branching tree structure with no
unary branches naturally constrains precision to be
no higher than recall, we focus our evaluation ex-
clusively on recall.

We train our unsupervised hierarchical hidden
Markov model (UHHMM) on the 7422 unlabeled
sentences of WSJ-10, 7536 sentences of NEGRA-
10 and 4624 sentences of CTB-10. We ran the
model on these corpora for 4000 iterations with
10 nodes with Intel Xeon x5650 CPUs, 120 cores
in total. Each training process took 4 days to com-
plete.

We conservatively initialize the number of ac-
tive categories |A| = 10, the number of awaited
categories |B| = 10, and the number of POS cate-
gories |P | = 15. The values for αA, αB , and αP

were each set to 0.5, while the values for αF and
αJ were each set to 0.1. The value of γ was set to
0.75.

4.1 Model Performance and Convergence

During training we used the joint log likelihood
over the entire model as the metric to test for con-
vergence. Figure 2 shows the fluctuation of the
log probabilities for the WSJ-10 dataset, averaged
over a window of 100 iterations. The log proba-
bilities converge at around 2000 iterations.

The recall curve in Figure 3 shows how recall
of UHHMM on gold WSJ-10 brackets changes
through iterations. For comparison with other
models, we compute recall using the model at it-
eration 3610, which scored closest to peak in av-
eraged log probability after the log probability ap-
peared to converge. Like the log probability plot,
the recall curve also steadily improves over several
iterations and converges at about the same place.
Having established this method on English, we
similarly tested for convergence on NEGRA and
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Figure 2: Log probabilities of the WSJ-10 dataset
from UHHMM at each iteration, averaged over a
window of 100 iterations.
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Figure 3: Recall curve of UHHMM on WSJ-10.

CTB by evaluating parser performance at the same
iteration at which peak log probability occurred.

4.2 Baseline approaches

While much of the work on grammar induction
uses gold POS tags as the basic units in the se-
quences to induce grammar, the technique pro-
posed in this work induces syntactic structures di-
rectly from raw text. We compare our proposed
approach with four existing grammar induction
techniques that also operate directly on the raw
text, as well as two more competitive baselines
make use of a priori POS tags. We report results on
three datasets in three different languages: Penn
Treebank for English, NEGRA for German and
Chinese Treebank for Chinese.

We compare against four existing techniques

WSJ-10 Training Unlabeled Unlabeled
Model set size precision recall

HMM 45.4k 64.4 64.7
CCL No Punc 49.2k 68.7 65.5
PRLG 45.4k 74.6 66.7
Right-branching - 55.2 70.0
UHHMM (this work) 7.4k 56.2 71.0

CCM (Induced) 7.4k 56.8 71.1
DMV+CCM (DISTR.) 7.4k 65.2 82.8

Table 1: Unlabeled bracketing evaluation results
of different unsupervised algorithms for the WSJ-
10 dataset. The results of CCM and DMV+CCM
are italicized as a reminder that they each use in-
duced POS tags instead of raw text for grammar
induction. Our model (UHHMM) has the highest
recall of all the models that trained only on raw
text, some of which use substantially larger train-
ing sets.

that similarly train on raw text, but which use
more training data than our system uses. The com-
mon cover link (CCL No Punc) model of Seginer
(2007) was trained on the entire WSJ Penn Tree-
bank (with punctuation removed), NEGRA cor-
pus and Chinese Treebank respectively, including
those sentences with more than ten words. The
probabilistic right linear grammar model (PRLG)
and hidden Markov model (HMM) of Ponvert et
al. (2011) were trained on WSJ sections 00-22,
first 18602 sentences of NEGRA which is almost
90% of the whole corpus and 85% of CTB respec-
tively, but with punctuation retained. The right-
branching model is a deterministic baseline where
all sentences in all three corpora are bracketed as
if they were all purely right-branching.

For completeness, we also compare against two
more competitive baselines that do make use of a
priori POS tags. CCM is the chart-based grammar
induction model from Klein and Manning (2002),
trained and tested on the WSJ-10 with induced
POS tags. DMV+CCM (DISTR.) is a model pro-
posed by Klein and Manning (2004) and Klein
(2005), where a joint model of the constituent con-
text model and the dependency model with va-
lence is used to train and induce structures, also
using WSJ-10 and NEGRA-10 sentences with au-
tomatically induced POS tags.

4.3 Results

In Table 1, we report unlabeled bracketing recall
on the WSJ-10 dataset. The results for German
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NEGRA-10 Unlabeled Unlabeled
Model precision recall

HMM 47.7 72.0
CCL No Punc 39.8 61.2
PRLG 56.3 72.1
Right-branching 33.9 60.1
UHHMM (this work) 41.8 72.4

DMV+CCM (DISTR.) 49.6 89.7

Table 2: Unlabeled bracketing evaluation re-
sults of different unsupervised algorithms for the
NEGRA-10 dataset. The results of DMV+CCM
are italicized as a reminder that they each use in-
duced POS tags. Our model (UHHMM) has the
highest recall of all the models that trained only
on raw text, all of which use the whole or a large
part of the NEGRA corpus as the training set.

CTB-10 Unlabeled Unlabeled
Model precision recall

HMM 55.8 53.1
CCL No Punc 48.5 47.8
PRLG 62.7 56.9
Right-branching 43.3 60.4
UHHMM (this work) 24.2 33.0

Table 3: Unlabeled bracketing evaluation results
of different unsupervised algorithms for the CTB-
10 dataset.

and Chinese are in Table 2 and Table 3. We ob-
serve state-of-the-art recall performance by our
system on English and German compared with
other recent induction systems which also do not
require a priori POS tags, some of which are
trained on substantially larger training sets. For
English and German we also observe higher recall
results by our system than the pure right-branching
baseline, indicating that our system is not simply
relying on sequences of +/+ operations. For Chi-
nese, our system performs worse than the compa-
rable systems and the right-branching baseline.

4.4 Analysis

The UHHMM did well on both the WSJ-10 and
NEGRA-10 datasets, correctly learning mostly
right-branching structures with no supervision,
and obtaining the highest recall among com-
parable systems and the right-branching base-
lines. However, the UHHMM performed sur-
prising poorly on the CTB-10 dataset. This
poor performance on CTB-10 may be attributable
to the relative lack of common function words

in Chinese. Inspection of the UHHMM model
output on English and German indicates that it
quickly assigns characteristic part-of-speech cate-
gories to function words like determiners and cop-
ulas, which then presumably constrain the remain-
ing categories. With no such function words in
Chinese, and a relatively small training set size,
the model may be facing severe sparse data prob-
lems. We therefore anticipate that a larger train-
ing set would substantially boost performance on
highly analytical languages like Chinese.

Another source of error in all three datasets is
that our model is constrained to posit tree struc-
tures that require no more than a single level of
left-corner recursive depth (recall §3). By exam-
ining the WSJ-10 data set, we observe that all but
26 sentences in this 7422 sentence corpus com-
ply with this depth restriction. In order to be di-
rectly comparable to previous results, we evaluate
on the full WSJ-10 data set, even though our sys-
tem is guaranteed to mislabel portions of these 26
more deeply recursive sentences. The NEGRA-10
and CTB-10 datasets are similarly predominantly
depth-one.

Future work will look to extend the model de-
scribed here to greater depths by using the learned
models we have described here as priors to dis-
tributions at greater depths. The results we have
obtained with a depth one system on shorter sen-
tences are good evidence that the problem is learn-
able in this model, and we are therefore encour-
aged that this approach will be likely to succeed.

5 Conclusion

This paper has presented a grammar induction
model based on a highly constrained version of
a memory-bounded left-corner parsing strategy,
which is able to achieve parsing performance for
an induced grammar that is comparable to exist-
ing models that are not similarly cognitively con-
strained. The fact that an induction model can
achieve competitive results on an existing gram-
mar induction task despite very restrictive memory
constraints is reassuring and suggests that these
kinds of memory constraints may be exploited in
human language acquisition.

The system and instructions for replicating our
evaluation setup are available on github.2

2http://anonymous.url
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