Oscillatory dynamics associated with prediction during language comprehension

Lin Wang ^{1,2}, Ole Jensen ³, Peter Hagoort ^{2,3}

Institute of Psychology, Chinese Academy of Science
 Max Planck Institute for Psycholinguistics
 Donders Institute for Brain, Cognition and Behaviour

Prediction in language

- Using violation paradigm, previous studies have shown that language processing involves prediction at multiple levels: semantic, syntactic, phonological, word form. (Szewczyk & Schriefers, 2013; Van Berkum, et al., 2005; DeLong, Urbach, & Kutas, 2005; Kim & Lai, 2012; Dikker, & Pylkkänen, 2013)
 - The day was breezy so the boy went outside to fly ...
 <u>a kite/an airplane</u>.
 - She measured the flour so she could bake a ...

cake/ceke/tont/srdt.

Oscillatory activities

- Predictive coding framework (accounted for sensory processing): beta prediction; gamma predictive error. (Friston, et al., 2015)
- The domain general role of alpha oscillation: (Jensen, et al., 2012; Payne & Sekuler, 2014)
 - Alpha decrease: the engagement of task-relevant areas
 - Alpha increase: functional inhibition

Incongruent vs. Congruent words: Alpha power decrease and increase in different regions (Wang, Jensen, et al., 2012)

The climbers finally reached the top of the mountain/tulip.

Research questions

- What is the oscillatory signature of prediction in language comprehension?
 - Beta and alpha oscillations
 - Conceptual level vs. sensory level prediction
- How does top-down prediction generated in language context influence the integration of upcoming input?

Method

- Design: 2 Contextual constraint (HC, LC) * 2 Semantic Congruence (C, IC)
- Examples:
 - HC-C/IC: In order to see these **cells**, one uses a <u>microscope</u>/<u>wheelchair</u>.
 - LC-C/IC: In order to see these **objects**, one uses a <u>microscope/wheelchair</u>.
- Pretests
 - Cloze probability test (n = 34): In order to see these cells, one uses a ...
 - Plausibility test (n = 32)
- Procedure

Pre-tests results

ERFs: four conditions

HC (C/IC): In order to see these **cells**, one uses a <u>microscope</u>/<u>wheelchair</u>. LC (C/IC): : In order to see these **objects**, one uses a <u>microscope</u>/<u>wheelchair</u>.

7

ERF topographies

IC-C: classical N400 effects in both HC and LC conditions.Interaction: HC (IC-C) vs. LC (IC-C)300-600ms: p = .01; Stronger Congruence effect over left frontal region in the HC conditions.

600-900ms: 200-300ms: 300-600ms: IC-C: p = .002, p = .006 32-31: p = .002 IC-C: p = .0899IC-C: p = .002 LC-HC: p = .4336 (neg) 34-33: p = .002 LC-HC: p = .0679 LC-HC: p = .1159 (neg) 33-31: p = .01 Interaction: n.s. Interaction: p = .056Interaction: p = .0134-32: p = .124 (neg)

Source of the N400 effects

bilateral inferior frontal, superior/middle temporal, anterior cingulate

LC/C-HC/C; 0.3 - 0.6s

Left inferior frontal and middle temporal

TFRs_low: all data (the power is log transformed)

Strong induced alpha power.

No baseline correction

Focus on the pre-CW interval when no word was on the screen: -0.55s - -0.25s.

Power spectrum: all data, -0.55 - -0.25s

TFRs_low: pre-CW (-1 - 0s); HC-LC

Power spectrum : HC-LC, -0.55 - -0.25s

TFRs_low: -0.55 - -0.25s, HC-LC

LT

Source localization:

60 80 100 120

0.04

p = .012

0.06

14

0.02

Power spectrum: all data, 0 - 1s; baseline correction: 0-1s

TFRs_low: CW (0-1s); IC-C

TFRs: IC-C; 2-6Hz; 0-1s

Stronger theta for IC than C:

- The time latency and localization mirror the N400 effect. Greater effort to retrieve and integrate the IC words.

HC (IC-C) vs. LC (IC-C): p = .034 (0.35 – 0.6s); Stronger Congruence effect over left frontal and temporal regions in the HC conditions.

TFRs: IC-C; 8-12Hz; 0-1s

Stronger alpha suppression for IC than C:

- Greater engagement of visual cortex for IC than C words even when the IC words were not on the screen:
- Iconic memory of previously presented words; double check the initial visual input.
- Alpha suppression in visual cortex in reading vs. alpha increase in visual cortex in listening.

HC (IC-C) vs. LC (IC-C): p = .05 (0.25 – 0.85s); Stronger Congruence effect over left temporal and occipital regions in the HC conditions.

TFRs: IC-C; 16-20Hz; 0-1s

Stronger beta suppression for IC than C over LIFG:

- Replicated the LIFG suppression reported in our previous study. (Wang, Jensen, et al., 2012)

HC (IC-C) vs. LC (IC-C): p = .004 (0.2 – 0.75s); Stronger Congruence effect over left frontal, temporal and occipital regions in the HC conditions.

TFRs_low: CW (0 – 1s); HC/C-LC/C

LF

0.06

-0.06

1

RF

MF

TFRs: HC/C-LC/C; 2-6Hz; 0-1s

Less strong theta for HC than LC:

- Less effort to integrate the pre-activated HC words.

TFRs: HC/C-LC/C; 8-12Hz; 0-1s

Mask with 50% maximum

Stronger alpha suppression for HC than LC:

- Early time window: The brain might be still in a prediction state
- Late time window: Motor preparation after completing semantic integration.

Stronger alpha power for HC than LC over left occipital region:

- The visual cortex was shut down because the HC words matched with the pre-activated words.

TFRs: HC/C-LC/C; 16-20Hz; 0-1s

Mask with 50% maximum

Stronger beta suppression for HC than LC:

- Early time window: More attentive in the HC condition.
- Late time window: Motor preparation after completing semantic integration.

Stronger beta power for HC than LC over left frontal and temporal regions:

- The highly predicted HC words are easier to be integrated.

TFRs_high: all data

Baseline correction: -0.75 - -0.25s 24

TFRs_high: contrasts

CW (0 – 1s); IC-C

TFRs_high: CW (60-90Hz); IC-C

p = .023 (0.15 – 0.65s)

HC (IC-C) vs. LC (IC-C): p = .8791 (no interaction)

Regression beta values: CW (0 - 1s); ERF vs. PL rating

Regression beta values: pre-CW (-1 - 0s); TFR vs. semantic constraint rating

The regression results are consistent with the results of the HC-LC contrast.

Regression beta values: CW (0 - 1s); TFR vs. PL rating

0.5

Regression beta values: CW (0 - 1s); TFR vs. PL rating

Summary

- 1. Both alpha and beta power suppressions relate to the prediction/engagement of task relevant regions.
- 2. Both **semantic and sensory regions** are pre-activated during language prediction.
- **3. Visual cortex** was engaged for processing unexpected stimuli even when no stimuli was presented.

To do

- 1. Phase resetting of alpha/beta and gamma oscillations
- 2. Alpha phase synchronization between LIFG and MTG regions
- 3. Cross frequency coupling (alpha-gamma)
- 4. Correlations between pre-CW and post-CW effects