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Background:  In recent  years,  analyses  of  event  related  potentials/fields  have  moved  from  the selection  of
a  few  components  and  peaks  to a mass-univariate  approach  in which  the  whole  data  space  is  analyzed.
Such  extensive  testing  increases  the  number  of  false  positives  and  correction  for  multiple  comparisons
is  needed.
Method:  Here  we  review  all cluster-based  correction  for multiple  comparison  methods  (cluster-height,
cluster-size,  cluster-mass,  and threshold  free  cluster  enhancement  – TFCE),  in  conjunction  with  two
computational  approaches  (permutation  and  bootstrap).
Results:  Data  driven  Monte-Carlo  simulations  comparing  two  conditions  within  subjects  (two  sample
Student’s  t-test)  showed  that,  on  average,  all cluster-based  methods  using  permutation  or  bootstrap
luster-based statistics
hreshold free cluster enhancement
onte-Carlo simulations

alike  control  well  the family-wise  error rate  (FWER),  with  a few  caveats.
Conclusions:  (i)  A  minimum  of  800  iterations  are  necessary  to obtain  stable  results;  (ii) below  50  trials,
bootstrap  methods  are  too  conservative;  (iii)  for  low  critical  family-wise  error  rates  (e.g. p =  1%),  permuta-
tions  can  be too  liberal;  (iv)  TFCE  controls  best  the  type 1 error  rate  with  an  attenuated  extent  parameter
(i.e.  power  <  1).

Crown Copyright  © 2014  Published  by Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY
. Introduction

Event-related potentials (ERP) and magnetic fields (ERF) are
easurable cortical responses to events used to track cognitive

rocesses. In a given experiment, they are observable at mul-
iple locations in space (electrodes or magnetic field sensors)
nd time. ERP and ERF are characterized by various components
hich are stereotypic features such as a peak or trough at par-

icular latencies.1 While for decades researchers have focused on
nalyzing such specific components, recent tools have been devel-
ped to analyze simultaneously the whole data space using a
ass-univariate approach, whereby statistical tests are performed
t every location and time point (e.g. Kiebel and Friston, 2004;
ostenveld et al., 2011; Pernet et al., 2011). This approach has

he merit of not choosing locations or components a priori and

∗ Corresponding author at: Centre for Clinical Brain Sciences (CCBS), Neuroimag-
ng Sciences, The University of Edinburgh, Chancellor’s Building, Room GU426D, 49
ittle France Crescent, Edinburgh EH16 4SB, UK. Tel.: +44 1314659530.

E-mail address: cyril.pernet@ed.ac.uk (C.R. Pernet).
1 http://www.sinauer.com/fmri2e/html/glossary.html.

ttp://dx.doi.org/10.1016/j.jneumeth.2014.08.003
165-0270/Crown Copyright © 2014 Published by Elsevier B.V. This is an open access arti
license  (http://creativecommons.org/licenses/by/3.0/).

therefore allows to potentially observing non-expected effects.
Because so many statistical tests are performed, such approach can
dramatically increase the odds of obtaining significant effects, i.e.
there is a high probability of false positive results (type 1 error
rate). Fortunately, different methods exist to control the family-
wise error rate (FWER), i.e. the type 1 error rate over an ensemble,
or family, of tests. The type 1 FWER is defined as the probability to
make at least one type 1 error over the family of tests. Probably the
best known method to control the FWER is the Bonferroni correc-
tion (Dunn, 1961) for which the alpha level is simply adjusted for
the number of tests. This method is however overly conservative
in the context of ERP/ERF analyses because it assumes statistical
independence of the tests. For ERP and ERF, there are a large num-
ber of dependencies in space and in time, such that statistical tests
are not independent. Methods used to control the type 1 FWER
in such context must therefore account for these spatiotemporal
dependencies.
ERP and ERF are distributed signals. Because there are a priori
effects everywhere, it is common practice to discretize the data
space and define treatment effects. Such discretization leads to the
examination of treatment effects in terms of topological features

cle under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1. Illustration of cluster-based methods applied to caricatured ERP data. Two effects were created, one transient effect (+25 �V) over 3 right posterior electrodes and
one  more sustained effect (+7 �V) over 8 electrodes. These effects are not meant to represent true EEG signal, but illustrate the different cluster attributes that are obtained
on  the basis of thresholded t values. From the observed t values, a binary ‘map’ is obtained (i.e. p < 0.05), and cluster attributes and TFCE data are computed via spatiotem-
poral  clustering (3 first rows of the figure). The transformed data, to be thresholded, are presented for 2 electrodes (D12 and A30) and over the full space. Because the statistics
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ike the maximum (e.g. +2 �V) or the extent (e.g. from +120 ms
o +190 ms  post stimulus onset) of the effect. In turn, this data
eduction diminishes the multiple comparisons problem, while
ccounting for spatiotemporal dependences. One popular method
hat deals with multiple comparisons by taking into account the
opology of the effects is random field theory (Worsley and Friston,
995). Although it was developed for Positron Emission Tomogra-
hy (PET) and functional Magnetic Resonance Imaging (fMRI), it has
lso been successfully applied to ElectroEncephaloGraphy (EEG)
nd MagnetoEncephaloGraphy (MEG) data (Kilner et al., 2005).
imilarly, extensions of the Bonferroni correction for dependent
ata have been proposed (Hochberg, 1988). There are currently
o large simulation results on the application of these methods
o ERP/ERF, but previous work on real and simulated fMRI sta-
istical images suggests that they are too conservative (Nichols
nd Hayasaka, 2003). In addition those methods also rely on var-
ous assumptions like positive dependence or smoothness. Here

e choose to review alternative methods that combine cluster-
ased inference with assumption-free techniques like permutation,
hich have been shown to outperform analytic techniques to con-

rol the type 1 FWER (Nichols and Hayasaka, 2003).
Cluster-based statistics consist in grouping together neighbor-

ng variables (t or F values for instance) into clusters and deriving
haracteristic values for the clusters. Typically, a cluster is char-
cterized by its height (maximal value), its extent (number of
lements) or a combination of both (Poline and Mazoyer, 1993).
n the last case, this is often obtained by summing the statistical
alues within a cluster, an approach referred to as cluster-mass
Bullmore et al., 1999; Maris and Oostenveld, 2007 – see Fig. 1 for
n illustration). A first issue with traditional cluster inference is that
lusters need to be defined by setting a ‘cluster forming threshold’
Gorgolewski et al., 2012). In practice, statistical values are consid-
red for inclusion in a cluster only if they are higher than the cluster
orming threshold, for instance a univariate p < 0.05. It is then pos-
ible to compute clusters’ attributes and their associated probabili-
ies. A second issue with cluster statistics is that inferences are lim-
ted to clusters, i.e. one cannot be certain of the significance of single
lements inside clusters. More recently, Smith and Nichols (2009)
ave proposed to ‘enhance’ t or F values, by integrating attributes
height and extent) computed for all possible a priori cluster form-
ng thresholds (Eq. (1)), leading to statistical maps where each data
oint, rather than cluster, can be thresholded. This method, referred
o as Threshold Free Cluster Enhancement (TFCE), has the advan-
age of alleviating issues of setting a cluster forming threshold and
f cluster inference and has been shown to control the type 1 FWER
or ERP using permutation (Mensen and Khatami, 2013).

FCE (loc,time) =
∫ h(loc,time)

h=h0

extent (h)Eheight (h)Hdh (1)

The TFCE value at a given location (loc) and time point (time) is
he integral of all cluster-extents × cluster-heights from h0 (typi-
ally the minimum value in the data) to h (typically the maximum
alue in the data). Parameters E and H are set to 0.5 and 2 respec-
ively in LIMO EEG (these choices are discussed below). In practice
he integral is estimated as a sum, using finite dh (here dh = 0.1). As
iscussed by Smith and Nichols (2009), TFCE is a generalization of

he cluster-mass statistic (E = 1, H = 0), and can be related to Random
ield Theory cluster p-values.

In the present study, using data driven simulations, we evalu-
ted the ability of cluster-based computational methods to control

re now based on cluster attributes, effect sizes can differ substantially from the origina
eing  stronger than the transient effect because it has a large support in space and time;
iii)  with cluster-mass, effect-sizes are reversed but the difference between the sustaine
luster-mass accounts for height; (iv) with TFCE effect-sizes are preserved, and in contras
nce Methods 250 (2015) 85–93 87

the type 1 FWER. The first goal of the study was  to establish the
equivalence of permutation and bootstrap procedures to control
the type 1 FWER, in the context of cluster-mass for ERP. Cluster-
mass is the method implemented in both LIMO EEG (Pernet et al.,
2011; https://gforge.dcn.ed.ac.uk/gf/project/limo eeg/) and Field-
Trip (Maris and Oostenveld, 2007; http://fieldtrip.fcdonders.nl/).
LIMO EEG uses a bootstrap-t  technique, and FieldTrip uses per-
mutation, but the two  techniques have not been compared in this
context. In addition, cluster-mass was  only validated, in FieldTrip,
for time–frequency data. The second goal of this study was to vali-
date the TFCE method for ERP, using the bootstrap-t  technique
implemented in LIMO EEG, as opposed to permutation as in Mensen
and Khatami (2013).

2. Methods

Codes used to generate and analyze the data are avail-
able on FigShare at http://figshare.com/articles/Type 1 error
rate using clustering for ERP/1008311. The data generated to com-
pare clustering approaches are too large to be shared (∼32 GB)
but the code could be used on any data and similar results
are expected. Intermediate results (i.e. FWER data per sub-
ject) are nevertheless available. For the TFCE simulations, codes
and intermediate data are also available at http://figshare.com/
articles/Type 1 error rate using clustering for ERP/1008325.

2.1. Cluster-attributes using bootstrap and permutation

Whilst simulations aimed at comparing bootstrap and permu-
tation techniques in the context of cluster-mass, we  also computed
cluster-extent and cluster-height to enquire potential differences.
Simulations were performed in the context of a within subject two
sample Student’s t-test, comparing two hypothetical conditions,
but results apply in principle to other within subject cases.

Ten subjects of the LIMO EEG dataset (Rousselet et al., 2009;
Rousselet et al., 2010) were randomly chosen as representative
ERP data. Data were from a 128 electrodes Biosemi system, 250 Hz
sampling rate, with 201 time point epochs ranging from −300 ms
to 500 ms. During recording, subjects discriminated between two
faces with various levels of noise (see references for details) and
performed over 1000 trials. One thousand Monte Carlo (MC) sim-
ulations were performed per subject (10,000 MC  in total). For each
Monte Carlo and each subject, samples of 10, 25, 50, 100, 300, 500,
900 trials per groups were obtained by increment, e.g. when N = 25,
the same 10 trials as with N = 10 were present. For each MC,  data
were randomly assigned to a condition (say face A versus face B)
and a two  sample Student’s t-test computed for every electrode
and time point. Three techniques were used to estimate the null
hypothesis (H0) for the sample considered: (i) a permutation t-
test in which all the trials from the two conditions are permuted
randomly between conditions and a t-test is computed for each
permutation, (ii) a modified percentile bootstrap in which all the tri-
als from the two conditions are first pooled together, then sampled
with replacement and randomly assigned to the two conditions
and a t-test computed for each bootstrap, (iii) a bootstrap-t in
which each condition is first mean centered, then sampled with

replacement and a t-test is computed for each bootstrap. For all
three techniques, 1000 iterations were computed and maximal
values recorded using cluster-forming thresholds of p = 0.05 and
p = 0.01. In total 7000 draws of data were computed per subject

l effects: (i) with cluster extent, effect-sizes are reversed with the sustained effect
 (ii) cluster-height preserves effect-sizes but discards spatiotemporal information;
d effect and the transient effect is attenuated compared to cluster-extend because
t to cluster attributes, the shape of each effect is also preserved.

https://gforge.dcn.ed.ac.uk/gf/project/limo_eeg/
http://fieldtrip.fcdonders.nl/
http://figshare.com/articles/Type_1_error_rate_using_clustering_for_ERP/1008311
http://figshare.com/articles/Type_1_error_rate_using_clustering_for_ERP/1008311
http://figshare.com/articles/Type_1_error_rate_using_clustering_for_ERP/1008325
http://figshare.com/articles/Type_1_error_rate_using_clustering_for_ERP/1008325


8 roscie

(
(

2

s
c
a
T
p
n
M
1
a
c
a
p
t
w
o
o
a

2

p
l
B
o
i
d
t
a
e

2

p
1
d
t
F
F
a
v
t
t
d
H

T
M

T
M
a

8 C.R. Pernet et al. / Journal of Neu

1000 MC  × 7 sample sizes) and 42,000 statistical maps obtained
7000 draws × 3 techniques × 2 cluster-forming thresholds).

.1.1. Exploratory data analysis
For each subject, technique, cluster-forming threshold, and

ample size, we computed the null distributions of maxima for the 3
luster statistics: cluster-height, cluster extent, and t2 cluster-mass
nd thresholded the sampled data according to these distributions.
he type 1 FWER for the critical FWE  thresholds of p = 0.05 and

 = 0.01 was computed as the probability to obtain at least one sig-
ificant effect across all electrodes and time points over the 1000
C  and then averaged over subjects. Deviation from the set type

 error rate was  tested for each combination of cluster statistics
nd technique (e.g. cluster-mass/permutations) by computing per-
entile bootstrap 95% confidence intervals (CI) with a Bonferroni
djustment for simultaneous probability coverage over the 7 sam-
le sizes (i.e. alpha = 0.9929% – Wilcox, 2012). We  also compared
he percentage of agreement between the different techniques,
hich is the proportion of times the same results were observed

ut of 10 × 1000 MC.  Finally, we looked at how many permutations
r bootstraps were necessary (from 200 to 1000 by steps of 200) to
chieve the nominal FWER.

.1.2. Confirmatory data analysis
To test the equivalence of permutation and the two bootstrap

rocedures for cluster-mass inference, simulation results were col-
apsed over all sample sizes and a percentile bootstrap (with a
onferroni adjustment for multiple comparisons) was computed
n the mean, 20% trimmed mean, and median type 1 FWER, test-
ng if the nominal level was obtained. Pair-wise comparisons of the
ifferent techniques (permutation vs. percentile bootstrap, permu-
ation vs. bootstrap t and percentile bootstrap vs. bootstrap t) were
lso performed using a percentile bootstrap on the mean differ-
nces.

.2. TFCE validation

A different set of data driven Monte Carlo simulations were
erformed on the same 10 subjects as above. For each subject,
000 MC  samples of 200 trials, 100 trials per condition, were
rawn randomly and with replacement from a pool of over 1000
rials, thus mimicking a series of draws from the same population.
or each MC  sample, a two-sample Student’s t-test was  computed.
or each of these t-tests, the null hypothesis was evaluated using

 bootstrap-t technique with 1000 iterations. The observed t
alues were thresholded using cluster-mass (cluster-forming

hreshold p = 0.05) and using TFCE. Since TFCE integrates mul-
iple thresholded maps, the cluster extent and height can have
ifferent powers leading to different enhanced values (Eq. (1)).
ere we tested 4 possible combinations of TFCE parameters:

able 1
ean, 20% trimmed mean and median of the cluster-mass FWER for a 5% critical thresho

Permutation 

Mean 0.0517 [0.0498, 0.0536] 

20%  Trimmed mean 0.0517 [0.0497, 0.0540] 

Median 0.0515 [0.049, 0.054] 

able 2
ean, 20% trimmed mean and median of the cluster-mass FWER for a 1% critical threshol

re  in bold.

Permutation 

Mean 0.0119 [0.0109,0.0129] 

20%  Trimmed mean 0.0119 [0.0110,0.013] 

Median 0.0120 [0.011,0.013] 
nce Methods 250 (2015) 85–93

extent0̂.5*height1̂, extent0̂.5*height2̂,  extent1̂*height1̂ and
extent1̂* height2̂. For each subject, the 5000 maps (1000 MC  for
cluster-mass + 1000 MC  × 4 TFCE) were thresholded at a critical
5% FWE  threshold and the type 1 FWER computed. The mean,
20% trimmed mean, and median FWER across subjects for the
4 combinations of TFCE parameters were computed and tested
against the nominal level (percentile bootstrap with alpha adjusted
for simultaneous probability coverage over the 4 possible combi-
nations) and compared with cluster-mass (bootstrap-t with alpha
adjusted for multiple comparisons).

3. Results

3.1. Exploratory data analysis

Results show that the six combinations of techniques (permuta-
tion, bootstrap) and cluster statistics (cluster-mass, cluster-extent,
cluster-height) controlled well the type 1 FWER (Figs. 2 and 3). In
addition, we observed a high percentage of agreement between sta-
tistical masks (always >99%) demonstrating the equivalence of the
techniques. The only cases where the type 1 FWER deviated from
the nominal level was  with the smallest sample sizes (N = 10 or
25 trials per condition), where bootstraps were too conservative.
One exception was observed for cluster-height under percentile
bootstrap with a critical 5% FWER, which gave a too high value.
To achieve the nominal FWER (Figs. 4 and 5), between 600 and
800 iterations were necessary, irrespective of the technique con-
sidered. If fewer than 600 iterations were drawn, results were too
liberal (except again for bootstrap techniques with small sample
sizes which were always too conservative).

3.2. Confirmatory data analysis

For a critical 5% FWER, on average across sample sizes, cluster-
mass inference for the three techniques gives a FWER that did not
differ significantly from 5% (Table 1). Significant mean differences
were nevertheless observed among the three techniques, with per-
mutation showing systematically higher FWER than bootstrap:
permutation vs. percentile bootstrap 0.0016 [0.0004, 0.0027] p = 0;
permutation vs. bootstrap-t 0.0022 [0.0011, 0.0035] p = 0; per-
centile bootstrap vs. bootstrap-t  0.0006 [−0.0003, 0.0015] p = 0.09.

For a critical 1% FWER, on average across sample sizes, cluster-
mass inference for the three techniques gives a FWER close to the
nominal level, with significant deviation in the case of permuta-
tions, being too liberal (Table 2). The mean FWER was significantly

higher for permutations compared to the percentile bootstrap
(0.007 [0.0001, 0.0012] p = 0.006), but not to the bootstrap-t  (0.0042
[−0.0002, 0.001] p = 0.09). The percentile bootstrap did not differ
significantly from bootstrap-t (−0.0028 [−0.0009, 0.0003] p = 0.34).

ld. In brackets are the adjusted 95% CI.

Percentile bootstrap Bootstrap-t

0.0501 [0.0479, 0.0523] 0.0495 [0.0471, 0.0519]
0.0497 [0.0476, 0.0524] 0.0493 [0.0469, 0.0519]
0.0495 [0.048, 0.0515] 0.049 [0.047, 0.0515]

d. In brackets are the adjusted 95% CI. Significant deviations from the nominal level

Percentile bootstrap Bootstrap t

0.0112 [0.0100, 0.0124] 0.0115 [0.0102,0.0127]
0.0109 [0.0099, 0.012] 0.0115 [0.0099, 0.0131
0.0110 [0.009, 0.012] 0.0110 [0.01, 0.013]



C.R. Pernet et al. / Journal of Neuroscience Methods 250 (2015) 85–93 89

Fig. 2. Type 1 FWER and percentages of agreement for a critical 5% FWE  (cluster forming threshold p = 0.05). Results are presented per cluster statistic with curves showing
the  mean FWER across subjects with adjusted 95% confidence intervals. Boxplots show the median and inter-quartile range agreement between techniques (outliers marked
with  plus signs).
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Fig. 3. Type 1 FWER and percentages of agreement for a critical 1% FWE  (cluster forming threshold p = 0.01). Results are presented per cluster statistic with curves showing
the  mean FWER across subjects with adjusted 95% confidence intervals. Boxplots show the median and inter-quartile range agreement between techniques (outliers marked
with  plus signs).
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Fig. 4. Type 1 FWER for a critical 5% FWE  (cluster forming threshold p = 0.05) for each cluster statistic and technique as a function of the number of sampling iterations for
the  7 sample sizes tested (n = [10 25 50 100 300 500 900] per group).

Fig. 5. Type 1 FWER observed for a critical 1% FWE  (cluster forming threshold p = 0.01) for each cluster statistic and technique as a function of the number of sampling
iterations for the 7 sample sizes tested (n = [10 25 50 100 300 500 900] per group).
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Fig. 6. Type 1 FWER for cluster-mass (CM) and Threshold Free Cluster Enhancement (TFCE) using 4 combinations of extent and height. Boxes show for each subject the mean
type  1 FWER and associated binomial 95% CI. The bottom right plots show bar graphs of th
each  TFCE parameter set and cluster-mass type 1 FWER.

Table 3
TFCE mean type 1 FWER (critical 5% FWER) and mean differences between TFCE and
cluster-mass. The adjusted 95% CI are indicated in square brackets, and significant
deviations are in bold.

Mean FWER Difference to cluster-mass

Cluster-mass 0.0457 [0.0392, 0.0522]
TFCE E0̂.5*H1̂ 0.0487 [0.0435, 0.0539] −0.0030 [−0.0053, −0.0008]
TFCE E0̂.5*H2̂ 0.0478 [0.0423, 0.0533] −0.0021 [−0.0057, 0.0017]
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TFCE E1̂*H1̂ 0.0459 [0.0423, 0.0495] −0.0002 [−0.0058, 0.0044]
TFCE E1̂*H2̂ 0.0444 [0.0403, 0.0485] 0.0013 [−0.0020, 0.0045]

.3. TFCE validation

The percentile bootstrap t-test with simultaneous 95% probabil-
ty coverage showed that TCFE with the extent parameter of power

 was too conservative (Table 3, Fig. 6). Comparisons with cluster-
ass show that the parameter combination extent0̂.5*height1̂  was

ignificantly less conservative than cluster-mass, while other com-
inations show results similar to cluster-mass.

. Discussion

Overall, our simulations show that cluster-based approaches
rovide a type 1 FWER close to or at the nominal level. Three
xceptions were nevertheless observed: (i) cluster-statistics with
ermutation can to be too liberal; (ii) cluster-statistics with boot-
trap techniques and sample sizes of 10 and 25 per group are too
onservative; (iii) TFCE with extent parameters at power 1 are too
onservative. With regards to the study main goals we showed that
i) permutation and bootstrap techniques give, on average, very

imilar results and that (ii) TFCE, in conjunction with bootstrap,
an be a valid method for ERP inference.

While some deviations are expected between techniques, boot-
trap showed strong deviations for small sample sizes, which can
e mean type 1 FWER across subjects and 95% CI, and the mean differences between

be explained by the high cluster statistic values obtained under H0.
To illustrate, let us consider cluster-mass with a critical 5% FWER
threshold and N = 10: over the 10 × 1000 Monte Carlo simulations,
permutation gave a range of cluster-mass thresholds from 1390 to
24,300 (median 18,321), whereas the percentile bootstrap gave a
range of cluster-mass thresholds from 17,843 to 31,594 (median
22,954), and the bootstrap-t  a range of cluster-mass thresholds
from 21,096 to 44,036 (median 29,190). One reason for the ele-
vated bootstrap thresholds could relate to the sampling scheme. A
t-test is defined by the ratio between the mean difference and the
square root of the sum of standardized variances. During bootstrap
resampling, if only few unique trials are drawn, this can reduce the
variance to a point where the denominator is inferior to 1, which in
turn can lead to large t values. In the simulations, we did not con-
straint the number of unique trials, and re-running the sampling
method to generate indices indicates that, for a given subject, no
unique values were drawn, but as low as 2 unique trials were used
which would have led to high t values. Permutation is not affected
by this issue because the same number of different trials is present
at each iteration, maintaining variance at a reasonable level. For
small sample sizes, it is thus recommended to use a permutation
test, or to constraint the minimum number of unique observations
in the bootstrap samples. Of course, whatever technique is used,
statistical inferences are fundamentally limited when only 10 trials
are used.

All techniques tended to have the same rate of convergence,
with a flattening of the type 1 FWER curves after ∼600 iterations
(Figs. 4 and 5). Troendle et al. (2004) showed that bootstrap proce-
dures can be too conservative when using maximum t statistic in a
multivariate context, especially with small sample sizes. Our results

suggest that for maximum cluster-statistics, results are stable after
600–800 iterations, and any observed variations in the type 1 FWER
are due to small sample sizes when using bootstrap approaches.
Also, there does not seem to be any advantage in using more than
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00 iterations: in one subject, 1000 MC  using a bootstrap-t  test
ith N = 10 showed no changes in type 1 error rate between 800

terations and up to 3000 iterations (type 1 FWER = 0.019).
We validated the use of TFCE in conjunction with a bootstrap-t

echnique in the context of ERP analyses, and showed that using
 = 0.5 (i.e. extent0̂.5 in Eq. (1)), the type 1 error rate is at the nom-
nal level. Using E = 1 gave too conservative results. Under the null
ypothesis, this is likely due to large clusters when h is small, which,
nce integrated lead to high TFCE thresholds, which in turn lead to

 conservative type 1 FWER. As pointed out by Smith and Nichols
2009), at the lowest values of h, the significant clusters are too large
nd do not provide very useful spatiotemporal specificity, and it is
herefore preferable to scale down their effect. Conversely, for the
arameter H, when H > 1, the TFCE scores scale supra-linearly with

ncreasing statistic image intensity, which can be consider to be
esirable. We  thus follow Smith and Nichols and also suggest to
se H = 2 (i.e. height2̂ in Eq. (1)), since squaring follows the log of
-values (see Smith and Nichols, 2009) and gives results similar to
luster-mass in our simulations. Mensen and Khatami (2013) val-
dated TFCE for EEG using permutation, with parameters E = 2/3,

 = 1 and H = 2. In their simulations the data had both no effect (H0)
nd some effects (H1), and they computed the balance between
ype 1 and type 2 error rates. The best result was obtain with E = 1.
iven that they did not test the FWER over the whole space, we
elieve that E < 1 remains the best option to achieve the nominal
WER.

The type 1 FWER was estimated with real null data and there-
ore there are no issues of signal-to-noise ratio (SNR), or number
f sources. In addition, because the methods described here adapt
o the acquisition parameters by estimating the null hypotheses
rom the data themselves, aspects of data acquisition related to
ampling (sampling rate or number of electrodes) should not affect
he interpretation of our results. In this type of simulation, only
he variance–covariance structure has an influence on the results.
lthough the large scale structure of the covariance matrix (i.e.
hich electrodes correlate with which, when) depends on the

xperimental set-up, the smaller scale structure of the covariance
atrix (i.e. how trials correlate) is expected to be similar across

atasets. We  can therefore expect to obtain similar results using
ther datasets, and we do remind interested readers that the code
s available to try on their own data. In contrast to the type 1
WER tested here, many parameters will affect power. The abil-
ty to detect an effect and declare this effect as significant is likely
o depend on the SNR, the spatiotemporal sampling, and the statis-
ical method used. In particular, cluster extent and cluster height
ill be affected by differences in source depth and SNR and it is

ecommended to use cluster-mass or TFCE in most situations.
In conclusion we showed that permutation and bootstrap tech-

iques can be used alike in combination with cluster statistics,

ncluding TFCE, providing accurate type 1 FWER. In the case of small
ample sizes (N = 10, 25 trials), it is advisable to use permutation as
t offers a better control over the type 1 FWER, whereas bootstrap
echniques are too conservative. Conversely, for larger sample sizes
nce Methods 250 (2015) 85–93 93

(N ≥ 50), it is advisable to use bootstrap techniques because permu-
tation can be too liberal. Finally, although our simulations aimed to
show generally applicable results, it remains to be tested how these
techniques behave with data having different variance structures.
For instance, between subject analyses tend to have small samples
with large variances, which can be a problem for permutation if the
data are heteroscedastic (Efron and Tibshirani, 1993).
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